More Of Pyramids

Calculus Level 4

Let n 4 n \ge 4 be a positive integer and P n P_{n} be a pyramid whose base is a regular n n -gon.

  1. Let λ n \lambda_{n} be the angle of inclination (in degrees) made between an edge and the base which minimizes the lateral surface area of the pyramid P n P_{n} above when the volume is held constant.
  2. Let θ \theta be the angle of inclination (in degrees) made between the slant height and the base which minimizes the lateral surface area of the pyramid P n P_{n} above when the volume is held constant. "Show the angle θ \theta is independent of n n ."

Find tan ( λ n ) tan ( θ ) \dfrac{\tan(\lambda_{n})}{\tan(\theta)} , then using n = 100 n = 100 find tan ( λ 100 ) tan ( θ ) \dfrac{\tan(\lambda_{100})}{\tan(\theta)} to four decimal places.

Bonus: Let V p ( n ) V_{p}(n) be the volume of P n P_{n} . Show lim n V p ( n ) = 1 3 π r 2 H = V c o n e \displaystyle \lim_{n \rightarrow \infty} V_{p}(n) = \dfrac{1}{3} \pi r^2 H = V_{cone}


The answer is 0.9995.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 16, 2017

For area of n g o n n - gon :

Let B C = x BC = x be a side of the n g o n n - gon , A C = A B = r AC = AB= r , A D = h AD = h^* , and B A D = 180 n \angle{BAD} = \dfrac{180}{n} .

x 2 = r sin ( 180 n ) r = x 2 sin ( 180 n ) h = x 2 cot ( 180 n ) A A B C = 1 4 cot ( 180 n ) x 2 \dfrac{x}{2} = r \sin(\dfrac{180}{n}) \implies r = \dfrac{x}{2 \sin(\dfrac{180}{n})} \implies h^* = \dfrac{x}{2} \cot(\dfrac{180}{n}) \implies A_{\triangle{ABC}} = \dfrac{1}{4} \cot(\dfrac{180}{n}) x^2 \implies

A n g o n = n 4 cot ( 180 n ) x 2 A_{n - gon} = \dfrac{n}{4} \cot(\dfrac{180}{n}) x^2 \implies the Volume of the pyramid V p = n 12 cot ( 180 n ) x 2 H V_{p} = \dfrac{n}{12} \cot(\dfrac{180}{n}) x^2 H

The lateral surface area P = n x 2 s , P^{*} = \dfrac{nx}{2} * s, where s s is the slant height.

V p = K V_{p} = K (constant) H = 12 K n c o t ( 180 n ) x 2 \implies H = \dfrac{12 K}{n * cot(\dfrac{180}{n}) x^2} \implies P ( x ) = 1 2 m ( n ) x ( j ( n ) m ( n ) ) 2 x 6 + ( 24 K ) 2 P^{*}(x) = \dfrac{1}{2 m(n) x} \sqrt{(j(n) * m(n))^2 x^6 + (24 K)^2} , where m ( n ) = cot ( 180 n ) m(n) = \cot(\dfrac{180}{n}) and j ( n ) = n m ( n ) j(n) = n * m(n)

d P d x = 2 ( j ( n ) m ( n ) ) 2 x 6 ( 24 K ) 2 2 m ( n ) ( j ( n ) m ( n ) ) 2 x 6 + ( 24 K ) 2 x 2 = 0 \implies \dfrac{dP^{*}}{dx} = \dfrac{2 (j(n) * m(n))^2 x^6 - (24 K)^2}{2 m(n) \sqrt{(j(n) * m(n))^2 x^6 + (24 K)^2} * x^2} = 0 x = ( ( 24 K ) 2 2 ( j ( n ) m ( n ) ) 2 ) 1 6 \implies x = (\dfrac{(24 K)^2}{2 (j(n)* m(n))^2})^{\dfrac{1}{6}}

H = 12 K ( j ( n ) ) ( ( 24 K ) 2 2 ( j ( n ) m ( n ) ) 2 ) 1 3 \implies H = \dfrac{12 K}{(j(n)) *( \dfrac{(24 K)^2}{2 (j(n) * m(n))^2})^{\dfrac{1}{3}}}

tan ( λ n ) = H r = 2 cos ( 180 n ) \implies \tan(\lambda_{n}) = \dfrac{H}{r} = \sqrt{2} \cos(\dfrac{180}{n}) and tan ( θ ) = H h = 2 tan ( λ n ) tan ( θ ) = cos ( 180 n ) . \tan(\theta) = \dfrac{H}{h^{*}} = \sqrt{2} \implies \dfrac{\tan(\lambda_{n})}{\tan(\theta)} = \cos(\dfrac{180}{n}).

Now using n = 100 tan ( λ 100 ) tan ( θ ) = cos ( 9 5 ) = 0.9995 n = 100 \implies \dfrac{\tan(\lambda_{100})}{\tan(\theta)} = \cos(\dfrac{9}{5}) = \boxed{0.9995} .

Note: lim n tan ( λ n ) = 2 lim n cos ( π / n ) = 2 = tan ( θ ) \lim_{n \rightarrow \infty} \tan(\lambda_{n}) = \sqrt{2} * \lim_{n \rightarrow \infty} \cos(\pi/n) = \sqrt{2} = \tan(\theta) .

Bonus: From above(changing degrees to radians) x 2 = r sin ( π n ) x = 2 r sin ( π n ) \dfrac{x}{2} = r \sin(\dfrac{\pi}{n}) \implies x = 2 r \sin(\dfrac{\pi}{n})

V p ( n ) = n 12 cot ( 180 n ) x 2 H = n 6 sin ( 2 π n ) r 2 H \therefore V_{p}(n) = \dfrac{n}{12} \cot(\dfrac{180}{n}) x^2 H = \dfrac{n}{6} \sin(\dfrac{2\pi}{n}) r^2 H .

Let w ( n ) = n sin ( 2 π n ) V p ( n ) = 1 6 w ( n ) r 2 H w(n) = n * \sin(\dfrac{2\pi}{n}) \implies V_{p}(n) = \dfrac{1}{6} w(n) r^2 H .

Using the inequality cos ( x ) < sin ( x ) x < 1 2 π cos ( 2 π n ) < n sin ( 2 π n ) < 2 π 2 π cos ( 2 π n ) < w ( n ) < 2 π \cos(x) < \dfrac{\sin(x)}{x} < 1 \implies 2\pi * \cos(\dfrac{2\pi}{n})< n * \sin(\dfrac{2\pi}{n}) < 2\pi \implies 2\pi * \cos(\dfrac{2\pi}{n})< w(n) < 2\pi .

2 π lim n cos ( 2 π n ) = 2 π lim n w ( n ) = 2 π lim n V p ( n ) = 1 3 π r 2 H = V c o n e 2\pi * \lim_{n \rightarrow \infty} \cos(\dfrac{2 \pi}{n}) = 2\pi \implies \lim_{n \rightarrow \infty} w(n) = 2\pi \implies \lim_{n \rightarrow \infty} V_{p}(n) = \boxed{\dfrac{1}{3} \pi r^2 H = V_{cone}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...