Let be a positive integer and be a pyramid whose base is a regular -gon.
Find , then using find to four decimal places.
Bonus: Let be the volume of . Show
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
For area of n − g o n :
Let B C = x be a side of the n − g o n , A C = A B = r , A D = h ∗ , and ∠ B A D = n 1 8 0 .
2 x = r sin ( n 1 8 0 ) ⟹ r = 2 sin ( n 1 8 0 ) x ⟹ h ∗ = 2 x cot ( n 1 8 0 ) ⟹ A △ A B C = 4 1 cot ( n 1 8 0 ) x 2 ⟹
A n − g o n = 4 n cot ( n 1 8 0 ) x 2 ⟹ the Volume of the pyramid V p = 1 2 n cot ( n 1 8 0 ) x 2 H
The lateral surface area P ∗ = 2 n x ∗ s , where s is the slant height.
V p = K (constant) ⟹ H = n ∗ c o t ( n 1 8 0 ) x 2 1 2 K ⟹ P ∗ ( x ) = 2 m ( n ) x 1 ( j ( n ) ∗ m ( n ) ) 2 x 6 + ( 2 4 K ) 2 , where m ( n ) = cot ( n 1 8 0 ) and j ( n ) = n ∗ m ( n )
⟹ d x d P ∗ = 2 m ( n ) ( j ( n ) ∗ m ( n ) ) 2 x 6 + ( 2 4 K ) 2 ∗ x 2 2 ( j ( n ) ∗ m ( n ) ) 2 x 6 − ( 2 4 K ) 2 = 0 ⟹ x = ( 2 ( j ( n ) ∗ m ( n ) ) 2 ( 2 4 K ) 2 ) 6 1
⟹ H = ( j ( n ) ) ∗ ( 2 ( j ( n ) ∗ m ( n ) ) 2 ( 2 4 K ) 2 ) 3 1 1 2 K
⟹ tan ( λ n ) = r H = 2 cos ( n 1 8 0 ) and tan ( θ ) = h ∗ H = 2 ⟹ tan ( θ ) tan ( λ n ) = cos ( n 1 8 0 ) .
Now using n = 1 0 0 ⟹ tan ( θ ) tan ( λ 1 0 0 ) = cos ( 5 9 ) = 0 . 9 9 9 5 .
Note: lim n → ∞ tan ( λ n ) = 2 ∗ lim n → ∞ cos ( π / n ) = 2 = tan ( θ ) .
Bonus: From above(changing degrees to radians) 2 x = r sin ( n π ) ⟹ x = 2 r sin ( n π )
∴ V p ( n ) = 1 2 n cot ( n 1 8 0 ) x 2 H = 6 n sin ( n 2 π ) r 2 H .
Let w ( n ) = n ∗ sin ( n 2 π ) ⟹ V p ( n ) = 6 1 w ( n ) r 2 H .
Using the inequality cos ( x ) < x sin ( x ) < 1 ⟹ 2 π ∗ cos ( n 2 π ) < n ∗ sin ( n 2 π ) < 2 π ⟹ 2 π ∗ cos ( n 2 π ) < w ( n ) < 2 π .
2 π ∗ lim n → ∞ cos ( n 2 π ) = 2 π ⟹ lim n → ∞ w ( n ) = 2 π ⟹ lim n → ∞ V p ( n ) = 3 1 π r 2 H = V c o n e