Let ( ∣ x ∣ ≤ 1 ) and ( 0 < a ≤ 1 ) .
Let f ( x ) = ∑ n = 2 ∞ ( n − 1 ) n x n − 1 and g ( x ) = ∑ n = 2 ∞ ( − 1 ) n ( n − 1 ) n x n − 1 .
(1): Show d x d ( g ( x ) ) ∣ x = a = d x d ( f ( x ) ) ∣ x = − a .
(2): If A C is tangent to g ( x ) at A : ( 1 , g ( 1 ) ) and B D is tangent to f ( x ) at B : ( − 1 , f ( − 1 ) ) , find the tangent lines to both curves and find the distance B C to 8 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
There's a typo in the last line of your solution : ∣ B C ∣ = ( ln 2 − 1 ) 2 + 1 2 ( 3 ln 2 − 2 ) . Good problem, I liked it! :)
Problem Loading...
Note Loading...
Set Loading...
Note: You can check that both series above converge on [ − 1 , 1 ] .
Let h ( x ) = ∑ n = 2 ∞ n x n ⟹ d x d ( h ( x ) ) = ∑ n = 2 ∞ x n − 1 = 1 − x x ⟹ h ( x ) = ∫ 0 x 1 − x x d x = ∫ 0 x ( 1 − x 1 − 1 ) d x = ln ( 1 − x 1 ) − x on ∣ x ∣ < 1 .
Let ( ∣ x ∣ ≤ 1 ) .
Let f ( x ) = ∑ n = 2 ∞ ( n − 1 ) n x n − 1 ⟹ d x d ( f ( x ) ) = ∑ n = 2 ∞ n x n − 2 = x 2 1 ∑ n = 2 ∞ n x n = x 2 1 ( ln ( 1 − x 1 ) − x ) ⟹ f ( x ) = ∫ x 2 1 ( ln ( 1 − x 1 ) − x ) d x
Let u = ln ( 1 − x 1 ) − x , d u = 1 − x x and d v = x − 2 d x ⟹ v = x − 1
⟹ f ( x ) = x − 1 ( ln ( 1 − x 1 ) − x ) ) ∣ ϵ x + ∫ ϵ x 1 − x 1 d x = x ( 1 − x ) ln ( 1 − x ) + x , where lim ϵ → 0 ϵ ( 1 − ϵ ) ln ( 1 − ϵ ) + ϵ = 0 .
g ( x ) = n = 2 ∑ ∞ ( − 1 ) n ( n − 1 ) n x n − 1 = − n = 2 ∑ ∞ ( n − 1 ) n ( − x ) n − 1 = − ( − x ( 1 + x ) ln ( 1 + x ) − x ) = x ( 1 + x ) ln ( 1 + x ) − x .
d x d ( g ( x ) ) = x 1 − x 2 ln ( 1 + x ) and d x d ( f ( x ) ) = x − 1 − x 2 ln ( 1 − x )
Let ( 0 < a ≤ 1 ) .
d x d ( g ( x ) ) ∣ x = a = a 1 − a 2 ln ( 1 + a ) = d x d ( f ( x ) ) ∣ x = − a
⟹ A C is tangent to g ( x ) at A : ( a , a ( 1 + a ) ln ( 1 + a ) − a ) and B D is tangent to f ( x ) at B : ( − a , a a − ( 1 + a ) ln ( 1 + a ) )
⟹ y = ( a 1 − a 2 ln ( 1 + a ) ) x + a ( 2 + a ) ln ( 1 + a ) − 2 a and y = ( a 1 − a 2 ln ( 1 + a ) ) x − a ( 2 + a ) ln ( 1 + a ) − 2 a respectively.
Letting a = 1 ⟹ y = ( 1 − ln ( 2 ) ) x + ( 3 ln ( 2 ) − 2 ) and y = ( 1 − ln ( 2 ) ) x − ( 3 ln ( 2 ) − 2 )
Using B : ( − 1 , 1 − 2 ln ( 2 ) ) ⟹ m ⊥ = 1 − ln ( 2 ) − 1 ⟹ the normal line to f ( x ) at x = − 1 is y = ( 1 − ln ( 2 ) − 1 ) x + 1 − ln ( 2 ) 2 ( ln ( 2 ) ) 2 − 3 ln ( 2 )
⟹
y + ( 1 − ln ( 2 ) 1 ) x = 1 − ln ( 2 ) 2 ( ln ( 2 ) ) 2 − 3 ln ( 2 )
y − ( 1 − ln ( 2 ) ) x = ( 3 ln ( 2 ) − 2 )
⟹ x 0 = ( ln ( 2 ) − 1 ) 2 + 1 5 ( ln ( 2 ) ) 2 − 8 ln ( 2 ) + 2 and y 0 = ( ln ( 2 ) − 1 ) 2 + 1 − 2 ( ln ( 2 ) ) 3 + 5 ( ln ( 2 ) ) 2 − 2
Using C : ( x 0 , y 0 ) and B : ( − 1 , 1 − 2 ln ( 2 ) ) ⟹ △ x = ( ln ( 2 ) − 1 ) 2 + 1 2 ( 3 ln ( 2 ) − 2 ) ( ln ( 2 ) − 1 ) and △ y = ( ln ( 2 ) − 1 ) 2 + 1 2 ( 3 ln ( 2 ) − 2 )
⟹ ∣ B C ∣ = ( ln 2 − 1 ) 2 + 1 2 ( 3 ln 2 − 2 ) ≈ 0 . 1 5 1 8 9 2 9 1