More on Alternating Series

Calculus Level 5

Let ( x 1 ) (|x| \leq 1) and ( 0 < a 1 ) (0 < a \leq 1) .

Let f ( x ) = n = 2 x n 1 ( n 1 ) n f(x) = \sum_{n = 2}^{\infty} \dfrac{x^{n - 1}}{(n - 1)n} and g ( x ) = n = 2 ( 1 ) n x n 1 ( n 1 ) n g(x) = \sum_{n = 2}^{\infty} (-1)^{n} \dfrac{x^{n - 1}}{(n - 1)n} .

(1): Show d d x ( g ( x ) ) x = a = d d x ( f ( x ) ) x = a \dfrac{d}{dx}(g(x))|_{x = a} = \dfrac{d}{dx}(f(x))|_{x = -a} .

(2): If A C \overleftrightarrow{AC} is tangent to g ( x ) g(x) at A : ( 1 , g ( 1 ) ) A: (1,g(1)) and B D \overleftrightarrow{BD} is tangent to f ( x ) f(x) at B : ( 1 , f ( 1 ) ) B: (-1,f(-1)) , find the tangent lines to both curves and find the distance B C \overline{BC} to 8 decimal places.


The answer is 0.15189291.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
May 18, 2018

Note: You can check that both series above converge on [ 1 , 1 ] [-1,1] .

Let h ( x ) = n = 2 x n n d d x ( h ( x ) ) = n = 2 x n 1 = x 1 x h ( x ) = 0 x x 1 x d x = h(x) = \sum_{n = 2}^{\infty} \dfrac{x^n}{n} \implies \dfrac{d}{dx}(h(x)) = \sum_{n = 2}^{\infty} x^{n - 1} = \dfrac{x}{1 - x} \implies h(x) = \int_{0}^{x} \dfrac{x}{1 - x} dx = 0 x ( 1 1 x 1 ) d x = ln ( 1 1 x ) x \int_{0}^{x} (\dfrac{1}{1 - x} - 1) dx =\ln(\dfrac{1}{1 - x}) - x on x < 1 |x| < 1 .

Let ( x 1 ) (|x| \leq 1) .

Let f ( x ) = n = 2 x n 1 ( n 1 ) n d d x ( f ( x ) ) = n = 2 x n 2 n = 1 x 2 n = 2 x n n = f(x) = \sum_{n = 2}^{\infty} \dfrac{x^{n - 1}}{(n - 1)n} \implies \dfrac{d}{dx}(f(x)) =\sum_{n = 2}^{\infty} \dfrac{x^{n - 2}}{n} = \dfrac{1}{x^2}\sum_{n = 2}^{\infty} \dfrac{x^{n}}{n} = 1 x 2 ( ln ( 1 1 x ) x ) f ( x ) = 1 x 2 ( ln ( 1 1 x ) x ) d x \dfrac{1}{x^2}(\ln(\dfrac{1}{1 - x}) - x) \implies f(x) = \int \dfrac{1}{x^2}(\ln(\dfrac{1}{1 - x}) - x) dx

Let u = ln ( 1 1 x ) x , d u = x 1 x u = \ln(\dfrac{1}{1 - x}) - x, du = \dfrac{x}{1 - x} and d v = x 2 d x v = 1 x dv = x^{-2} dx \implies v = \dfrac{-1}{x}

f ( x ) = 1 x ( ln ( 1 1 x ) x ) ) ϵ x + ϵ x 1 1 x d x = ( 1 x ) ln ( 1 x ) + x x \implies \boxed{f(x) = \dfrac{-1}{x}(\ln(\dfrac{1}{1 - x}) - x))|_{\epsilon}^{x} + \int_{\epsilon}^{x} \dfrac{1}{1 - x} dx = \dfrac{(1 - x)\ln(1 - x) + x}{x}} , where lim ϵ 0 ( 1 ϵ ) ln ( 1 ϵ ) + ϵ ϵ = 0 \lim_{\epsilon \rightarrow 0} \dfrac{(1 - \epsilon)\ln(1 - \epsilon) + \epsilon}{\epsilon} = 0 .

g ( x ) = n = 2 ( 1 ) n x n 1 ( n 1 ) n = n = 2 ( x ) n 1 ( n 1 ) n = ( ( 1 + x ) ln ( 1 + x ) x x ) = ( 1 + x ) ln ( 1 + x ) x x \boxed{g(x) = \sum_{n = 2}^{\infty} (-1)^{n} \dfrac{x^{n - 1}}{(n - 1)n} = - \sum_{n = 2}^{\infty} \dfrac{(-x)^{n - 1}}{(n - 1)n} = -(\dfrac{(1 + x)\ln(1 + x) - x}{-x}) = \dfrac{(1 + x)\ln(1 + x) - x}{x}} .

d d x ( g ( x ) ) = 1 x ln ( 1 + x ) x 2 \dfrac{d}{dx}(g(x)) = \dfrac{1}{x} - \dfrac{\ln(1 + x)}{x^2} and d d x ( f ( x ) ) = 1 x ln ( 1 x ) x 2 \dfrac{d}{dx}(f(x)) = \dfrac{-1}{x} - \dfrac{\ln(1 - x)}{x^2}

Let ( 0 < a 1 ) (0 < a \leq 1) .

d d x ( g ( x ) ) x = a = 1 a ln ( 1 + a ) a 2 = d d x ( f ( x ) ) x = a \dfrac{d}{dx}(g(x))|_{x = a} = \dfrac{1}{a} - \dfrac{\ln(1 + a)}{a^2} = \dfrac{d}{dx}(f(x))|_{x = -a}

A C \implies \overleftrightarrow{AC} is tangent to g ( x ) g(x) at A : ( a , ( 1 + a ) ln ( 1 + a ) a a ) A: (a, \dfrac{(1 + a)\ln(1 + a) - a}{a}) and B D \overleftrightarrow{BD} is tangent to f ( x ) f(x) at B : ( a , a ( 1 + a ) ln ( 1 + a ) a ) B:( -a, \dfrac{a - (1 + a)\ln(1 + a)}{a})

y = ( 1 a ln ( 1 + a ) a 2 ) x + ( 2 + a ) ln ( 1 + a ) 2 a a \implies y = (\dfrac{1}{a} - \dfrac{\ln(1 + a)}{a^2})x + \dfrac{(2 + a)\ln(1 + a) - 2a}{a} and y = ( 1 a ln ( 1 + a ) a 2 ) x ( 2 + a ) ln ( 1 + a ) 2 a a y = (\dfrac{1}{a} - \dfrac{\ln(1 + a)}{a^2})x - \dfrac{(2 + a)\ln(1 + a) - 2a}{a} respectively.

Letting a = 1 y = ( 1 ln ( 2 ) ) x + ( 3 ln ( 2 ) 2 ) a = 1 \implies y = (1 - \ln(2))x + (3\ln(2) - 2) and y = ( 1 ln ( 2 ) ) x ( 3 ln ( 2 ) 2 ) y = (1 - \ln(2))x - (3\ln(2) - 2)

Using B : ( 1 , 1 2 ln ( 2 ) ) m = 1 1 ln ( 2 ) B: (-1,1 - 2\ln(2)) \implies m_{\perp} = \dfrac{-1}{1 - \ln(2)} \implies the normal line to f ( x ) f(x) at x = 1 x = -1 is y = ( 1 1 ln ( 2 ) ) x + 2 ( ln ( 2 ) ) 2 3 ln ( 2 ) 1 ln ( 2 ) y = (\dfrac{-1}{1 - \ln(2)})x + \dfrac{2(\ln(2))^2 - 3\ln(2)}{1 - \ln(2)}

\implies

y + ( 1 1 ln ( 2 ) ) x = 2 ( ln ( 2 ) ) 2 3 ln ( 2 ) 1 ln ( 2 ) y + (\dfrac{1}{1 - \ln(2)})x = \dfrac{2(\ln(2))^2 - 3\ln(2)}{1 - \ln(2)}

y ( 1 ln ( 2 ) ) x = ( 3 ln ( 2 ) 2 ) y - (1 - \ln(2))x = (3\ln(2) - 2)

x 0 = 5 ( ln ( 2 ) ) 2 8 ln ( 2 ) + 2 ( ln ( 2 ) 1 ) 2 + 1 \implies x_{0} = \dfrac{5(\ln(2))^2 - 8\ln(2) + 2}{(\ln(2) - 1)^2 + 1} and y 0 = 2 ( ln ( 2 ) ) 3 + 5 ( ln ( 2 ) ) 2 2 ( ln ( 2 ) 1 ) 2 + 1 y_{0} = \dfrac{-2(\ln(2))^3 + 5(\ln(2))^2 - 2}{(\ln(2) - 1)^2 + 1}

Using C : ( x 0 , y 0 ) C:(x_{0},y_{0}) and B : ( 1 , 1 2 ln ( 2 ) ) B: (-1,1 - 2\ln(2)) x = 2 ( 3 ln ( 2 ) 2 ) ( ln ( 2 ) 1 ) ( ln ( 2 ) 1 ) 2 + 1 \implies \triangle{x} = \dfrac{2(3\ln(2) - 2)(\ln(2) - 1)}{(\ln(2) - 1)^2 + 1} and y = 2 ( 3 ln ( 2 ) 2 ) ( ln ( 2 ) 1 ) 2 + 1 \triangle{y} = \dfrac{2(3\ln(2) - 2)}{(\ln(2) - 1)^2 + 1}

B C = 2 ( 3 ln 2 2 ) ( ln 2 1 ) 2 + 1 0.15189291 \implies |BC| = \dfrac{2(3\ln2 -2)}{\sqrt{(\ln2 -1)^2 +1}} \approx \boxed{0.15189291}

There's a typo in the last line of your solution : B C = 2 ( 3 ln 2 2 ) ( ln 2 1 ) 2 + 1 |BC| = \dfrac{2(3\ln2 -2)}{\sqrt{(\ln2 -1)^2 +1}} . Good problem, I liked it! :)

Tapas Mazumdar - 3 years ago

Log in to reply

Thank you for informing me of the typo.

Rocco Dalto - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...