More on Volumes of Revolution 3

Calculus Level pending

(1): Find the volume V 1 V_{1} of the region bounded by f ( x ) = 4 5 ( x + 1 x 2 ) f(x) = \dfrac{4}{5}(\sqrt{x} + \sqrt{1 - x^2}) and g ( x ) = 8 5 x g(x) = \dfrac{8}{5}\sqrt{x} when revolved about the y y axis.

(2): Find the volume V 2 V_{2} of the region bounded by h ( x ) = 4 5 ( x 3 1 x 2 ) h(x) = \dfrac{4}{5}(\sqrt{x} - 3\sqrt{1 - x^2}) and j ( x ) = 8 5 x j(x) = \dfrac{-8}{5}\sqrt{x} when revolved about the y y axis.

Express the answer as V 2 V 1 \dfrac{V_{2}}{V_{1}} .

Note: The curve h ( x ) = 4 5 ( x 3 1 x 2 ) h(x) = \dfrac{4}{5}(\sqrt{x} - 3\sqrt{1 - x^2}) was cut off at the bottom, the coordinate of the y y intercept should be ( 0 , 12 5 ) (0,\dfrac{-12}{5}) .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Mar 11, 2018

f ( x ) = g ( x ) x 2 + x 1 = 0 x = 5 1 2 f(x) = g(x) \implies x^2 + x - 1 = 0 \implies x = \dfrac{\sqrt{5} - 1}{2} \implies the two curves intersect at x = 5 1 2 V 1 = 2 π 0 5 1 2 x ( 4 5 ( x + 1 x 2 ) 8 5 x ) d x = x = \dfrac{\sqrt{5} - 1}{2} \implies V_{1} = 2\pi \int_{0}^{\frac{\sqrt{5} - 1}{2}} x(\dfrac{4}{5}(\sqrt{x} + \sqrt{1 - x^2}) - \dfrac{8}{5}\sqrt{x}) dx = 8 π 5 0 5 1 2 x 1 x 2 x 3 2 d x = \dfrac{8\pi}{5} \int_{0}^{\frac{\sqrt{5} - 1}{2}} x\sqrt{1 - x^2} - x^{\frac{3}{2}} dx = 8 π 5 ( 1 3 ( 1 x 2 ) 3 2 2 5 x 5 2 ) 0 5 1 2 = \dfrac{8\pi}{5} (\dfrac{-1}{3} (1 - x^2)^{\frac{3}{2}} - \dfrac{2}{5} x^{\frac{5}{2}})|_{0}^{\frac{\sqrt{5} - 1}{2}} =

8 π 5 ( 1 3 ( 5 1 2 ) 3 2 ( 2 + 3 5 15 ) ) \dfrac{8\pi}{5} (\dfrac{1}{3} - (\dfrac{\sqrt{5} - 1}{2})^{\dfrac{3}{2}} (\dfrac{2 + 3\sqrt{5}}{15})) .

h ( x ) = j ( x ) x 2 + x 1 = 0 x = 5 1 2 h(x) = j(x) \implies x^2 + x - 1 = 0 \implies x = \dfrac{\sqrt{5} - 1}{2} \implies the two curves intersect at x = 5 1 2 V 2 = 2 π 0 5 1 2 x ( 8 5 x 4 5 ( x 3 1 x 2 ) ) d x = x = \dfrac{\sqrt{5} - 1}{2} \implies V_{2} = 2\pi \int_{0}^{\frac{\sqrt{5} - 1}{2}} x(\dfrac{-8}{5}\sqrt{x} - \dfrac{4}{5}(\sqrt{x} - 3\sqrt{1 - x^2}))dx = 24 π 5 0 5 1 2 x 1 x 2 x 3 2 d x = \dfrac{24\pi}{5} \int_{0}^{\frac{\sqrt{5} - 1}{2}} x\sqrt{1 - x^2} - x^{\frac{3}{2}} dx = 24 π 5 ( 1 3 ( 1 x 2 ) 3 2 2 5 x 5 2 ) 0 5 1 2 = \dfrac{24\pi}{5} (\dfrac{-1}{3} (1 - x^2)^{\frac{3}{2}} - \dfrac{2}{5} x^{\frac{5}{2}})|_{0}^{\frac{\sqrt{5} - 1}{2}} =

24 π 5 ( 1 3 ( 5 1 2 ) 3 2 ( 2 + 3 5 15 ) ) = 3 V 1 V 2 V 1 = 3 \dfrac{24\pi}{5} (\dfrac{1}{3} - (\dfrac{\sqrt{5} - 1}{2})^{\dfrac{3}{2}} (\dfrac{2 + 3\sqrt{5}}{15})) = 3V_{1} \implies \dfrac{V_{2}}{V_{1}} = \boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...