When the curve f ( y ) = 6 4 2 5 y 2 on the interval [ 5 − 8 2 5 − 1 , 5 8 2 5 − 1 ] is reflected about the line x = 2 5 − 1 a closed region is formed.If the region formed is revolved about the y axis the volume V = b c a 4 a ( b − 1 ) a b π , where a , b and c are coprime positive integers.
Find a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Upon reflecting the curve f ( y ) = 6 4 2 5 y 2 on the interval [ 5 − 8 2 5 − 1 , 5 8 2 5 − 1 ] about the line x = 2 5 − 1 we obtain the curve g ( y ) = 5 − 1 − 6 4 2 5 y 2 .
Let j = 5 − 1 and a = 5 8 2 j .
The volume V = π ∫ − a a ( g ( y ) ) 2 − ( f ( y ) ) 2 d y = π ∫ − a a ( j − 6 4 2 5 y 2 ) 2 − ( 6 4 2 5 ) 2 y 4 d y = π j ∫ − a a ( j − 6 4 2 5 y 2 ) d y = π j ( j y − 9 6 2 5 y 3 ) ∣ − a a = 2 π a j ( j − 9 6 2 5 a 2 ) = 2 π a j ( j − 3 2 j ) = 3 4 j 2 a π =
1 5 1 6 2 j 2 5 π = 1 5 1 6 2 ( 5 − 1 ) 2 5 π = 5 ∗ 3 2 4 2 ( 5 − 1 ) 2 5 π = b c a 4 a ( b − 1 ) a b π ⟹ a + b + c = 1 0 .