More Paraboloid Surface Dynamics

A particle of mass m m is sliding on a smooth surface in the shape of a paraboloid with equation 4 a z = x 2 + y 2 4az \; = \; x^2 + y^2 (for some arbitrary distance a > 0 a > 0 ), with the positive z z -axis pointing vertically upwards. There is a constant gravitational force of magnitude m g mg on the particle, acting vertically downwards.

Initially the particle is at a point on the paraboloid with height z = a z=a , and is moving horizontally on the surface with instantaneous speed 2 a ω 2a\omega , where 2 a ω 2 > g 2a\omega^2 > g . Define the quantity α = 2 a ω 2 g > 1 \alpha \; = \; \frac{2a\omega^2}{g} \; > \; 1 There is a unique value of α > 1 \alpha > 1 for which the orbit of the particle is a simple periodic loop, so that the particle rises from its initial height of z = a z=a to its maximum height, and returns to its initial height while performing precisely one orbit around the paraboloid, as shown in the diagram. If this particular value of α \alpha is α 0 \alpha_0 , find the value of 1 0 5 α 0 \lfloor 10^5 \alpha_0\rfloor .

Inspiration


The answer is 1193897.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 30, 2020

Working in cylindrical polar coordinates, the position vector of the particle can be written as r = ( 2 a z cos θ 2 a z sin θ z ) \mathbf{r} \; = \; \left(\begin{array}{c} 2\sqrt{az}\cos\theta \\ 2\sqrt{az}\sin\theta \\ z \end{array}\right) Differentiating with respect to t t we obtain the kinetic energy of the particle T = 1 2 m ( 1 + a z ) z ˙ 2 + 2 m a z θ ˙ 2 T \; = \; \tfrac12m\left(1 + \tfrac{a}{z}\right)\dot{z}^2 + 2maz\dot{\theta}^2 Since the potential energy of the particle is V = m g z V = mgz we obtain the Lagrangian L = 1 2 m ( 1 + a z ) z ˙ 2 + 2 m a z θ ˙ 2 m g z \mathcal{L} \; = \; \tfrac12m\left(1 + \tfrac{a}{z}\right)\dot{z}^2 + 2maz\dot{\theta}^2 - mgz Initially we know that r = 2 a r=2a , z = a z = a , r ˙ = z ˙ = 0 \dot{r} = \dot{z} = 0 and θ ˙ = ω \dot{\theta} = \omega . Since L \mathcal{L} is independent of θ \theta , we deduce that L θ ˙ \frac{\partial \mathcal{L}}{\partial \dot{\theta}} is constant, and we deduce that z θ ˙ = a ω z\dot{\theta} = a\omega . The second equation of motion is 0 = d d t ( L z ˙ ) L z = d d t [ m ( 1 + a z ) z ˙ ] + m a 2 z 2 z ˙ 2 2 m a θ ˙ 2 + m g = m ( 1 + a z ) z ¨ m a 2 z 2 z ˙ 2 2 m a 3 ω 2 z 2 + m g = d d z [ 1 2 m ( 1 + a z ) z ˙ 2 + m g α a 2 z + m g z ] \begin{aligned} 0 & = \; \displaystyle \frac{d}{dt}\Big(\frac{\partial \mathcal{L}}{\partial \dot{z}}\Big) - \frac{\partial \mathcal{L}}{\partial z} \; = \; \frac{d}{dt}\Big[m\left(1 + \tfrac{a}{z}\right)\dot{z}\Big] + \frac{ma}{2z^2}\dot{z}^2 - 2ma\dot{\theta}^2 + mg \\ & = \; \displaystyle m\left(1 + \tfrac{a}{z}\right)\ddot{z} - \frac{ma}{2z^2}\dot{z}^2 - \frac{2ma^3\omega^2}{z^2} + mg \; = \; \frac{d}{dz}\Big[\tfrac12m\left(1 + \tfrac{a}{z}\right)\dot{z}^2 + \frac{mg\alpha a^2}{z} + mgz \Big] \end{aligned} so that 1 2 m ( 1 + a z ) z ˙ 2 + m g α a 2 z + m g z = m g a ( α + 1 ) \tfrac12m\left(1 + \tfrac{a}{z}\right)\dot{z}^2 + \frac{mg\alpha a^2}{z}+ mgz \; = \; mga(\alpha + 1) and hence z ˙ 2 = 2 g ( α a z ) ( z a ) a + z \dot{z}^2 \; = \; \frac{2g(\alpha a - z)(z - a)}{a + z} Thus the particle oscillates between height z = a z=a and z = α a z=\alpha a with period T = 2 a α a a + z 2 g ( α a z ) ( z a ) d z T \; = \; 2\int_a^{\alpha a}\sqrt{\frac{a+z}{2g(\alpha a - z)(z - a)}}\,dz Using the substitution z = a ( cos 2 θ + α sin 2 θ ) z = a(\cos^2\theta + \alpha\sin^2\theta) , we obtain T = 2 0 1 2 π a + a ( cos 2 θ + α sin 2 θ ) 2 g 2 d θ = 2 2 a g 0 1 2 π 1 + cos 2 θ + α sin 2 θ d θ = 2 2 a g 0 1 2 π 2 + ( a 1 ) sin 2 θ d θ = 4 a g E ( α 1 2 ) \begin{aligned} T & = \; \displaystyle 2\int_0^{\frac12\pi} \sqrt{\frac{a + a(\cos^2\theta + \alpha \sin^2\theta)}{2g}}\,2d\theta \; = \; 2\sqrt{\tfrac{2a}{g}}\int_0^{\frac12\pi}\sqrt{1 + \cos^2\theta + \alpha\sin^2\theta}\,d\theta \\[2ex] & = \; \displaystyle 2\sqrt{\tfrac{2a}{g}} \int_0^{\frac12\pi} \sqrt{2 + (a-1)\sin^2\theta}\,d\theta \; = \; 4\sqrt{\tfrac{a}{g}}\mathsf{E}\left(-\tfrac{\alpha-1}{2}\right) \end{aligned} where E \mathsf{E} is the complete elliptic integral.

During a half period the particle moves through an angle Θ ( α ) \Theta(\alpha) , where Θ ( α ) = a α a d θ d z d z = a α a θ ˙ z ˙ d z = a ω a α a d z z z ˙ = a ω a α a a + z 2 g ( α a z ) ( z a ) d z z = ω 2 a g 0 1 2 π 1 + cos 2 θ + α sin 2 θ cos 2 θ + α sin 2 θ d θ = α 0 1 2 π 2 + ( α 1 ) sin 2 θ 1 + ( α 1 ) sin 2 θ d θ = α 2 [ K ( α 1 2 ) + Π ( ( α 1 ) , α 1 2 ) ] \begin{aligned} \Theta(\alpha) & = \; \int_a^{\alpha a}\frac{d\theta}{dz}\,dz \; = \; \int_a^{\alpha a} \frac{\dot{\theta}}{\dot{z}}\,dz \; = \; a\omega \int_a^{\alpha a}\frac{dz}{z \dot{z}} \; = \; a\omega \int_a^{\alpha a} \sqrt{\frac{a+z}{2g(\alpha a - z)(z - a)}}\,\frac{dz}{z} \\ & = \; \omega\sqrt{\tfrac{2a}{g}}\int_0^{\frac12\pi} \frac{\sqrt{1 + \cos^2\theta + \alpha \sin^2\theta}}{\cos^2\theta + \alpha\sin^2\theta}\,d\theta \; = \; \sqrt{\alpha}\int_0^{\frac12\pi} \frac{\sqrt{2 + (\alpha-1)\sin^2\theta}}{1 + (\alpha-1)\sin^2\theta}\,d\theta \\ & = \; \sqrt{\tfrac{\alpha}{2}}\left[\mathsf{K}\left(-\tfrac{\alpha-1}{2}\right) + \mathsf{\Pi}\left(-(\alpha-1),-\tfrac{\alpha-1}{2}\right)\right] \end{aligned} where K \mathsf{K} is the complete elliptic integral of the first kind, while Π \mathsf{\Pi} is the complete elliptic integral of the third kind.

We want to find the value of α > 1 \alpha > 1 for which Θ ( α ) = π \Theta(\alpha) = \pi . Now Θ ( α ) > α 0 1 2 π d θ 1 + ( α 1 ) sin 2 θ = K ( α 1 α ) \Theta(\alpha) \; > \; \sqrt{\alpha}\int_0^{\frac12\pi} \frac{d\theta}{\sqrt{1 + (\alpha-1)\sin^2\theta}} \; = \; \mathsf{K}\left(\tfrac{\alpha-1}{\alpha}\right) and since K \mathsf{K} is an increasing function on ( 0 , 1 ) (0,1) , with K ( 39 40 ) > π \mathsf{K}\left(\tfrac{39}{40}\right) > \pi , we deduce that Θ > π \Theta > \pi for all α > 40 \alpha > 40 . Inspection of the graph of Θ \Theta for 1 < α < 40 1 < \alpha < 40 shows that there is a unique value α 0 \alpha_0 for which Θ ( α 0 ) = π \Theta(\alpha_0) = \pi . Numerical calculation gives us α 0 = 11.9389732... \alpha_0 = 11.9389732... , and hence 1 0 5 α 0 = 1193897 \lfloor 10^5 \alpha_0 \rfloor = \boxed{1193897} .

@Mark Hennings How did this problem can get Level 4 ??

A Former Brilliant Member - 11 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...