More Powers Above

Calculus Level 5

For positive integers A , B , C , D A,B,C,D , we have

lim x 2 x x x x 2 16 x x x 16 \large \displaystyle \lim_{x \to 2} \frac {x^{x^{x^x}} - 2^{16}}{x^{x^x} - 16}

equals to

2 A 1 + B ( ln 2 ) 2 + C ( ln 2 ) + 2 D ln 2 \frac {2^A}{1 + B ( \ln 2)^2 + C \cdot ( \ln 2) } + 2^D \cdot \ln 2

What is the value of A + B + C D A + B + C - D ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronak Agarwal
Oct 4, 2014

Applying L-Hopital's rule we get :

lim x 2 x x x x . x x x . l n ( x ) . ( 1 x . l n ( x ) + x ( x 1 ) + x x l n ( x ) . ( l n ( x ) + 1 ) ) x x x ( x x 1 + x x . l n ( x ) . ( 1 + l n ( x ) ) ) \LARGE \displaystyle \lim _{ x\rightarrow 2 }{ \frac { { x }^{ { x }^{ { x }^{ x } } }.{ x }^{ { x }^{ x } }.ln(x).(\frac { 1 }{ x.ln(x) } +{ x }^{ (x-1) }+{ x }^{ x }ln(x).(ln(x)+1)) }{ { x }^{ { x }^{ x } }({ x }^{ x-1 }+{ x }^{ x }.ln(x).(1+ln(x))) } }

Put the x = 2 x=2 to get :

2 16 . l n ( 2 ) . ( 1 2. l n ( 2 ) + 2 + 4. l n ( 2 ) . ( 1 + l n ( 2 ) ) ) 2 + 4. l n ( 2 ) . ( 1 + l n ( 2 ) ) \Large \displaystyle { \frac { { 2 }^{ 16 }.ln(2).(\frac { 1 }{ 2.ln(2) } +2+4.ln(2).(1+ln(2))) }{ 2+4.ln(2).(1+ln(2)) } }

Which on simplifying we get :

2 16 . l n ( 2 ) + 2 14 1 + 2. l n ( 2 ) 2 + 2. l n ( 2 ) \Large \displaystyle { 2 }^{ 16 }.ln(2)+\frac { { 2 }^{ 14 } }{ 1+2.{ ln(2) }^{ 2 }+2.ln(2) }

Hence A = 14 , B = 2 , C = 2 , D = 16 \boxed{A=14,B=2,C=2,D=16}

Did it the same way. Is there a more elegant solution ?

Arif Ahmed - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...