Colorful Power Sum

Find the last digit when

1 1 + 2 2 + 3 3 + + 9 9 + 10 10 \color{#3D99F6}1^{\color{#3D99F6}1} + \color{#20A900}2^{\color{#20A900}2} + \color{#69047E}3^{ \color{#69047E}3} + \cdots + \color{#D61F06}9^{ \color{#D61F06}9} + \color{#BA33D6}{10}^{\color{#BA33D6}{10}}

is written out as an integer.

1 3 5 7 9

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Aditya Raut
Sep 4, 2014

Looking at the last digits, 1 1 1 ( m o d 10 ) 2 2 4 ( m o d 10 ) 3 3 7 ( m o d 10 ) 4 4 6 ( m o d 10 ) 5 5 5 ( m o d 10 ) 6 6 6 ( m o d 10 ) 7 7 3 ( m o d 10 ) 8 8 6 ( m o d 10 ) 9 9 9 ( m o d 10 ) 1 0 10 0 ( m o d 10 ) 1^1 \equiv 1 \pmod{10} \\ 2^2 \equiv 4 \pmod{10} \\ 3^3\equiv 7 \pmod{10} \\ 4^4 \equiv 6 \pmod{10} \\ 5^5 \equiv 5\pmod{10} \\ 6^6\equiv 6\pmod{10} \\ 7^7\equiv 3\pmod{10} \\ 8^8 \equiv 6 \pmod{10} \\ 9^9\equiv 9\pmod{10} \\ 10^{10} \equiv 0 \pmod{10}

Sum ( m o d 10 ) \pmod{10} is 1 + 4 + 7 + 6 + 5 + 6 + 3 + 6 + 9 7 ( m o d 10 ) 1+4+7+6+5+6+3+6+9 \equiv \boxed{7} \pmod{10}

Looks like a good design made by LaTeX \LaTeX LOL

How could you calculate 9 to the power 9 mod10 ?

Burak Yalçıntaş - 5 years, 6 months ago

Log in to reply

9^1=9 9^2=81 9^3=**9 this is a cyclic property so 9^9 ends with 9

Raviteja Arakatla - 5 years, 6 months ago

9 2 1 ( m o d 10 ) 9^{2} \equiv 1 \pmod{10} 9 8 1 ( m o d 10 ) 9^{8} \equiv 1 \pmod{10} 9 9 8 = 9 9 9 ( m o d 10 ) 9*9^{8}=9^{9} \equiv 9 \pmod{10}

Carlos Muñoz - 5 years, 6 months ago

Mod means ?

Suneel Kumar - 5 years, 5 months ago

Log in to reply

Mod means remainder. :)

Tamal Khan - 5 years, 4 months ago

Better method. 9 is congruent to -1(mod 10) By property of exponentiation -- 9^9 is congruent to -1^9 (mod 10) We know that -1^9=-1 Therefore remainder is 9 which is congruent to -1 (mod 10)

Amogh Huddar - 3 years, 4 months ago

Stupid exercice

Abelian Group - 2 years ago

I'm afraid to disagree with you, Ablelian group

Xiang Li - 1 year ago
Achille 'Gilles'
Jan 7, 2016

No calculator using only the last digit with maximum simplification,

1 ⇒ 1

2•2 ⇒ 4

3•3•3 ⇒ 7

4•4→6, 6•6 ⇒ 6

Multiplicating 5s will always finish by ⇒ 5

Multiplicating 6s will always finish by ⇒ 6

7•7→9,...•7→3, ...•7→1, period of 7931 ⇒ 3

8•8→4, 4•4→6, 6•6 ⇒ 6

9•9→1, odd period of 91 ⇒ 9

Multiplicating 10s will always finish by ⇒ 0

1+4+7+6+5+6+3+6+9+0, cancelling pairs 1+9, 4+6 and 7+3

6+5+6 = 17

Answer = 7

[It took me longer to write this than to solve the problem.]

Brock Brown
Feb 17, 2015

Hooray for list comprehensions.

Python:

1
print str(sum([i**i for i in range(1,11)]))[-1]

Me too

1
print sum(i**i for i in range(1,11)) % 10

Chang Jia Geng - 5 years, 5 months ago

it's a math question not a computer science question involving PYTHON

Anubhav Pal - 4 years, 5 months ago

Clear explanation please

Suneel Kumar - 5 years, 5 months ago

Log in to reply

It's basically getting a calculator and writing "1 * 1+2 * 2+3 * 3+...+10 * 10" , then looking at the last digit

Alex Li - 5 years, 5 months ago

1 n 1^n will always be 1

Last digit of 2 4 n + 1 , 2 4 n + 2 , 2 4 n + 3 , 2 4 ( n + 1 ) 2^{4n+1},2^{4n+2},2^{4n+3},2^{4(n+1)} is respectively 2 , 4 , 6 , 8 2,4,6,8 . 2 = 4 × 0 + 2 2=4 \times 0+2 so the last digit of 2 2 2^2 is 4

Last digit of 3 4 n + 1 , 3 4 n + 2 , 3 4 n + 3 , 3 4 ( n + 1 ) 3^{4n+1},3^{4n+2},3^{4n+3},3^{4(n+1)} is respectively 3 , 9 , 7 , 1 3,9,7,1 . 3 = 4 × 0 + 3 3=4 \times 0+3 so the last digit of 3 3 3^3 is 7

Last digit of 4 2 n + 1 , 4 2 ( n + 1 ) 4^{2n+1},4^{2(n+1)} is respectively 4 , 6 4,6 . 4 = 2 × 2 4=2 \times 2 so the last digit of 4 4 4^4 is 6

Last digit of 5 n , 6 n 5^n,6^n is respectively always 5 , 6 5,6

Last digit of 7 4 n + 1 , 7 4 n + 2 , 7 4 n + 3 , 7 4 ( n + 1 ) 7^{4n+1},7^{4n+2},7^{4n+3},7^{4(n+1)} is respectively 7 , 9 , 3 , 1 7,9,3,1 . 7 = 4 × 1 + 3 7=4 \times 1+3 so the last digit of 7 7 7^7 is 3

Last digit of 8 4 n + 1 , 8 4 n + 2 , 8 4 n + 3 , 8 4 ( n + 1 ) 8^{4n+1},8^{4n+2},8^{4n+3},8^{4(n+1)} is respectively 8 , 4 , 2 , 6 8,4,2,6 . 8 = 2 × 4 8=2 \times 4 so the last digit of 8 8 8^8 is 6

Last digit of 9 2 n + 1 , 9 2 ( n + 1 ) 9^{2n+1},9^{2(n+1)} is respectively 9 , 1 9,1 . 9 = 2 × 4 + 1 9=2 \times 4+1 so the last digit of 9 9 9^9 is 9

Last digit of 1 0 n 10^n is always 0

So the sum of the last digits is 1 + 4 + 7 + 6 + 5 + 6 + 3 + 6 + 9 + 0 = 47 1+4+7+6+5+6+3+6+9+0=47 .So the answer is 7 \boxed{\large{7}}

R Dasgupta
Sep 20, 2017

This problem can be solved by just manually computing some smaller powers ( like till 4^4 ) and then using the concept of cyclicity ( which states that the unit's digit of n^k is the same as that of n^x where x is the residue of k modulo 4.)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...