Given that the sum above is equal to , where and are coprime positive integers, find .
Clarification
The sum is taken over all positive integer divisors of .
denotes the Euler's totient function .
denotes " divides ".
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
For d prime numbers:
ϕ ( d ) ϕ ( ϕ ( d ) ) = ϕ ( d ϕ ( d ) ) = ϕ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ d d ( 1 − d 1 ) ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞ = ϕ ( 1 − d 1 ) = ϕ ( d d − 1 ) = ϕ ( d ) ϕ ( d − 1 ) = d × d d − 1 ( d − 1 ) ( p 1 p 1 − 1 ) ( p 2 p 2 − 1 ) ( p 3 p 3 − 1 ) ⋯ = ( p 1 p 1 − 1 ) ( p 2 p 2 − 1 ) ( p 3 p 3 − 1 )
For d composite numbers:
If d = p 1 a × p 2 b × p 3 c × ⋯ :
Γ ( d ) = Γ ( p 1 ) a × Γ ( p 2 ) b × Γ ( p 3 ) c × ⋯
Solution:
The divisors of 2 9 2 3 3 are: 1 2 3 × 3 1 × 4 1 2 3 2 3 × 3 1 3 1 2 3 × 4 1 4 1 3 1 × 4 1
1 :
1
2 3 :
2 1 × 1 1 1 0 = 1 1 5
3 1 :
2 1 × 3 2 × 5 4 = 1 5 4
4 1 :
2 1 × 5 4 = 5 2
2 3 × 3 1 :
Γ ( 2 3 ) × Γ ( 3 1 ) = 3 3 4
2 3 × 4 1 :
Γ ( 2 3 ) × Γ ( 4 1 ) = 1 1 2
3 1 × 4 1 :
Γ ( 3 1 ) × Γ ( 4 1 ) = 7 5 8
2 3 × 3 1 × 4 1 :
Γ ( 2 3 ) × Γ ( 3 1 ) × Γ ( 4 1 ) = 1 6 5 8
d ∣ 2 9 2 3 3 ∑ ϕ ( d ) ϕ ( ϕ ( d ) ) = 1 + 1 1 5 + 1 5 4 + 5 2 + 3 3 4 + 1 1 2 + 7 5 8 + 1 6 5 8 = 1 1 × 3 × 5 × 5 5 × ( 1 1 × 3 × 5 + 5 × 3 × 5 + 4 × 1 1 + 2 × 3 × 1 1 + 4 × 5 + 2 × 3 × 5 + 8 ) + 8 × 1 1 = 8 2 5 5 × ( 1 6 5 + 7 5 + 4 4 + 6 6 + 2 0 + 3 0 + 8 ) + 8 8 = 8 2 5 2 1 2 8
So the solution is: 2 1 2 8 + 8 2 5 = 2 9 5 3