More problems in 2016 part 5

d 29233 ϕ ( ϕ ( d ) ) ϕ ( d ) \large\sum_{d\mid 29233}\frac{\phi(\phi(d))}{\phi(d)}

Given that the sum above is equal to p q \dfrac pq , where p p and q q are coprime positive integers, find p + q p+q .

Clarification

  • The sum is taken over all positive integer divisors d d of 29233 = 23 × 31 × 41 29233 = 23 \times31\times41 .

  • ϕ ( ) {\phi (\cdot)} denotes the Euler's totient function .

  • a b a\mid b denotes " a a divides b b ".


The answer is 233.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

For d d prime numbers:

If d 1 = p 1 a × p 2 b × p 3 c × d-1=p_1 ^a\times p_2^b\times p_3^c\times\cdots , where p n p_n are prime numbers.

ϕ ( ϕ ( d ) ) ϕ ( d ) = ϕ ( ϕ ( d ) d ) = ϕ ( d ( 1 1 d ) d ) = ϕ ( 1 1 d ) = ϕ ( d 1 d ) = ϕ ( d 1 ) ϕ ( d ) = ( d 1 ) ( p 1 1 p 1 ) ( p 2 1 p 2 ) ( p 3 1 p 3 ) d × d 1 d = ( p 1 1 p 1 ) ( p 2 1 p 2 ) ( p 3 1 p 3 ) \large\begin{aligned} \cfrac{\phi(\phi(d))}{\phi(d)} &=\phi\left (\cfrac{\phi(d)}{d} \right )\\ &=\phi\left (\cfrac{d\left ( 1-\cfrac{1}{d} \right )}{d} \right )\\ &=\phi\left ( 1-\cfrac{1}{d} \right )\\ &=\phi\left ( \cfrac{d-1}{d} \right )\\ &=\cfrac{\phi\left ( d-1 \right )}{\phi\left ( d \right )}\\ &=\cfrac{(d-1)\left ( \cfrac{p_1-1}{p_1} \right )\left ( \cfrac{p_2-1}{p_2} \right )\left ( \cfrac{p_3-1}{p_3} \right )\cdots}{d\times\cfrac{d-1}{d}}\\ &=\left ( \cfrac{p_1-1}{p_1} \right )\left ( \cfrac{p_2-1}{p_2} \right )\left ( \cfrac{p_3-1}{p_3} \right ) \end{aligned}

For d d composite numbers:

Let's Γ ( d ) \Gamma(d) denote ϕ ( ϕ ( d ) ) ϕ ( d ) \cfrac{\phi(\phi(d))}{\phi(d)}

If d = p 1 a × p 2 b × p 3 c × d=p_1 ^a\times p_2^b\times p_3^c\times\cdots :

Γ ( d ) = Γ ( p 1 ) a × Γ ( p 2 ) b × Γ ( p 3 ) c × \large\Gamma(d)=\Gamma(p_1)^a\times \Gamma(p_2)^b\times \Gamma(p_3)^c\times\cdots

Solution:

The divisors of 29233 29233 are: 1 23 31 41 23 × 31 × 41 23 × 31 23 × 41 31 × 41 \begin{array}{cccc} 1&23&31&41\\ 23\times31\times41&23\times31&23\times41&31\times41 \end{array}

1 1 :

1 1

23 23 :

1 2 × 10 11 = 5 11 \cfrac{1}{2}\times\cfrac{10}{11}=\cfrac{5}{11}

31 31 :

1 2 × 2 3 × 4 5 = 4 15 \cfrac{1}{2}\times\cfrac{2}{3}\times\cfrac{4}{5}=\cfrac{4}{15}

41 41 :

1 2 × 4 5 = 2 5 \cfrac{1}{2}\times\cfrac{4}{5}=\cfrac{2}{5}

23 × 31 23\times31 :

Γ ( 23 ) × Γ ( 31 ) = 4 33 \Gamma(23)\times\Gamma(31)=\cfrac{4}{33}

23 × 41 23\times41 :

Γ ( 23 ) × Γ ( 41 ) = 2 11 \Gamma(23)\times\Gamma(41)=\cfrac{2}{11}

31 × 41 31\times41 :

Γ ( 31 ) × Γ ( 41 ) = 8 75 \Gamma(31)\times\Gamma(41)=\cfrac{8}{75}

23 × 31 × 41 23\times31\times41 :

Γ ( 23 ) × Γ ( 31 ) × Γ ( 41 ) = 8 165 \Gamma(23)\times\Gamma(31)\times\Gamma(41)=\cfrac{8}{165}


d 29233 ϕ ( ϕ ( d ) ) ϕ ( d ) = 1 + 5 11 + 4 15 + 2 5 + 4 33 + 2 11 + 8 75 + 8 165 = 5 × ( 11 × 3 × 5 + 5 × 3 × 5 + 4 × 11 + 2 × 3 × 11 + 4 × 5 + 2 × 3 × 5 + 8 ) + 8 × 11 11 × 3 × 5 × 5 = 5 × ( 165 + 75 + 44 + 66 + 20 + 30 + 8 ) + 88 825 = 2128 825 \large \begin{aligned} \displaystyle\sum_{d\mid 29233}\cfrac{\phi(\phi(d))}{\phi(d)} &=1+\cfrac{5}{11}+\cfrac{4}{15}+\cfrac{2}{5}+\cfrac{4}{33}+\cfrac{2}{11}+\cfrac{8}{75}+\cfrac{8}{165}\\ &=\cfrac{5\times(11\times3\times5+5\times3\times5+4\times11+2\times3\times11+4\times5+2\times3\times5+8)+8\times11}{11\times3\times5\times5}\\ &=\cfrac{5\times(165+75+44+66+20+30+8)+88}{825}\\ &=\cfrac{2128}{825} \end{aligned}


So the solution is: 2128 + 825 = 2953 2128+825=2953

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...