More Pyramid Craze

Level pending

Consider a pyramid whose base is a regular n g o n . n - gon.

Let V p V_{p} be the volume of the largest pyramid above that can be inscribed in a sphere of radius R R , where V s V_{s} is the volume of the sphere.

If lim n V p ( n ) = a b V s \lim_{n \rightarrow \infty} V_{p}(n) = \dfrac{a}{b} V_{s} , find a + b a + b , where a a and b b are coprime positive integers.

Note: The final sequence V p ( n ) V_{p}(n) contains sin ( θ ( n ) ) \sin(\theta(n)) , and θ ( n ) \theta(n) should be expressed in radians.

Also Note: My intention is not to take the easy route and find the maximum volume of a right circular cone inscribed in a sphere.


The answer is 35.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Nov 23, 2017

For area of n g o n n - gon :

Let B C = x BC = x be a side of the n g o n n - gon , A C = A B = r AC = AB= r , A D = h AD = h^* , and B A D = 180 n \angle{BAD} = \dfrac{180}{n} .

x 2 = r sin ( 180 n ) r = x 2 sin ( 180 n ) h = x 2 cot ( 180 n ) A A B C = 1 4 cot ( 180 n ) x 2 \dfrac{x}{2} = r \sin(\dfrac{180}{n}) \implies r = \dfrac{x}{2 \sin(\dfrac{180}{n})} \implies h^* = \dfrac{x}{2} \cot(\dfrac{180}{n}) \implies A_{\triangle{ABC}} = \dfrac{1}{4} \cot(\dfrac{180}{n}) x^2 \implies

A n g o n = n 4 cot ( 180 n ) x 2 V p = n 12 cot ( 180 n ) x 2 H A_{n - gon} = \dfrac{n}{4} \cot(\dfrac{180}{n}) x^2 \implies V_{p} = \dfrac{n}{12} \cot(\dfrac{180}{n}) x^2 H

The volume of the sphere V s = 4 3 π R 3 V_{s} = \dfrac{4}{3} \pi R^3

Let H H be the height of the given pyramid.

In the right triangle above: A C = H R , B C = x 2 sin ( 180 n ) , A B = R AC = H - R, BC = \dfrac{x}{2 \sin(\dfrac{180}{n})}, AB = R \implies

R 2 = ( H R ) 2 + x 2 4 csc 2 ( 180 n ) x 2 = 4 H ( 2 R H ) sin 2 ( 180 n ) R^2 = (H - R)^2 + \dfrac{x^2}{4} \csc^2(\dfrac{180}{n}) \implies x^2 = 4H(2R - H) \sin^2(\dfrac{180}{n})

V p ( H ) = n 6 sin ( 360 n ) ( 2 R H 2 H 3 ) \implies V_{p}(H) = \dfrac{n}{6} \sin(\dfrac{360}{n}) (2RH^2 - H^3) \implies

d V p d H = n 6 sin ( 360 n ) ( H ) ( 4 R 3 H ) = 0 \dfrac{dV_{p}}{dH} = \dfrac{n}{6} \sin(\dfrac{360}{n}) (H) (4R - 3H) = 0 , H 0 H = 4 R 3 x 2 = 32 9 sin 2 ( 180 n ) R 2 x = 4 2 3 sin ( 180 n ) R H \neq 0 \implies H = \dfrac{4R}{3} \implies x^2 = \dfrac{32}{9} \sin^2(\dfrac{180}{n}) R^2 \implies x = \dfrac{4 \sqrt{2}}{3} \sin(\dfrac{180}{n}) R

H = 4 R 3 H = \dfrac{4R}{3} maximizes V p ( H ) V_{p}(H) since d 2 V p d H 2 ( H = 4 R 3 ) = 2 n 3 sin ( 360 n ) R < 0 \dfrac{d^2V_{p}}{dH^2}|_{(H = \dfrac{4R}{3})} =\dfrac{-2n}{3} \sin(\dfrac{360}{n}) R < 0

H = 4 R 3 H = \dfrac{4R}{3} and x 2 = 32 9 sin 2 ( 180 n ) R 2 x^2 = \dfrac{32}{9} \sin^2(\dfrac{180}{n}) R^2 \implies V p ( n ) = 16 n 81 sin ( 360 n ) R 3 V_{p}(n) = \dfrac{16n}{81} \sin(\dfrac{360}{n}) R^3

Converting to radians we have: V p ( n ) = 16 n 81 sin ( 2 π n ) R 3 V_{p}(n) = \dfrac{16n}{81} \sin(\dfrac{2\pi}{n}) R^3

Using the inequality cos ( x ) < sin ( x ) x < 1 2 π cos ( 2 π n ) < n sin ( 2 π n ) < 2 π 32 π 81 cos ( 2 π n ) R 3 < 16 n 81 sin ( 2 π n ) R 3 < 32 π 81 R 3 \cos(x) < \dfrac{\sin(x)}{x} < 1 \implies 2\pi \cos(\dfrac{2\pi}{n}) < n \sin(\dfrac{2\pi}{n}) < 2\pi \implies \dfrac{32 \pi}{81} \cos(\dfrac{2\pi}{n}) R^3 < \dfrac{16 n}{81} \sin(\dfrac{2\pi}{n}) R^3 < \dfrac{32 \pi}{81} R^3

32 π 81 cos ( 2 π n ) R 3 < V p ( n ) < 32 π 81 R 3 \implies \dfrac{32 \pi}{81} \cos(\dfrac{2\pi}{n}) R^3 < V_{p}(n) < \dfrac{32 \pi}{81} R^3

Since lim n cos ( 2 π n ) = 1 lim n V p ( n ) = 32 π 81 R 3 = 4 3 π R 3 ( 8 27 ) = 8 27 V s = a b V s a + b = 35 \lim_{n \rightarrow \infty} \cos(\dfrac{2\pi}{n}) = 1 \implies \lim_{n \rightarrow \infty} V_{p}(n) = \dfrac{32\pi}{81} R^3 = \dfrac{4}{3} \pi R^3 (\dfrac{8}{27}) = \dfrac{8}{27} V_{s} = \dfrac{a}{b} V_{s} \implies a + b = \boxed{35} .

Note: lim n V p ( n ) = 8 27 V s \lim_{n \rightarrow \infty} V_{p}(n) = \dfrac{8}{27} V_{s} is the maximum volume of a cone inscribed in a sphere, although my intention was not to just get the volume of a cone inscribed in a sphere.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...