More Pyramid Problems

Level pending

Let V p V_{p} be the volume of the largest square pyramid that can be inscribed in a sphere of radius R R .

In the above square pyramid with volume V p V_{p} , find the angle(in degrees) between two adjacent slant faces to six decimal places.


The answer is 101.536959.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Nov 22, 2017

For solution

First let's find a formula for the angle between two adjacent slant faces.

Let 0 : ( 0 , 0 , 0 ) , P : ( x , 0 , 0 ) , R : ( 0 , x , 0 ) , S : ( x 2 , x 2 , H ) . 0: (0,0,0), P:(x,0,0), R:(0,x,0), S:(\dfrac{x}{2},\dfrac{x}{2},H).

O S = x 2 i + x 2 j + h k \vec{OS} = \dfrac{x}{2} \vec{i} + \dfrac{x}{2} \vec{j} + h \vec{k}

O P = x i + 0 j + 0 k \vec{OP} = x \vec{i} + 0 \vec{j} + 0 \vec{k}

O R = 0 i + x j + 0 k \vec{OR} = 0 \vec{i} + x \vec{j} + 0 \vec{k}

u = O S × O R = h x i + 0 j + x 2 2 k \vec{u} = \vec{OS} \times \vec{OR} = -hx \vec{i} + 0 \vec{j} + \dfrac{x^2}{2} \vec{k}

v = O S × O P = 0 i + x h j x 2 2 k \vec{v} = \vec{OS} \times \vec{OP} = 0 \vec{i} + xh \vec{j} - \dfrac{x^2}{2} \vec{k}

Let θ \theta be the angle between the two adjacent faces P S O PSO and R S O RSO

u v = u v cos ( θ ) x 4 4 = 4 h 2 + x 4 4 cos ( θ ) cos ( θ ) = x 2 4 h 2 + x 2 \vec{u} \cdot \vec{v} = |\vec{u}| * |\vec{v}| \cos(\theta) \implies \dfrac{-x^4}{4} = \dfrac{4 h^2 + x^4}{4} \cos(\theta) \implies \cos(\theta) = \dfrac{-x^2}{4h^2 + x^2}

Next we find the the height H H and base x x that will maximize the volume of the pyramid inscribed in a sphere of radius R R .

Let x x be the side of the square base and A H AH be the height h h of the pyramid. Let O A OA and O C OC be radius R R of the sphere, so O H OH is h R h - R and half the diagonal C H CH of the square is x 2 \dfrac{x}{\sqrt{2}} . The volume of the sphere V s = 4 3 π R 3 V_{s} = \dfrac{4}{3} \pi R^3 and the volume of the square pyramid V p = 1 3 x 2 h V_{p} = \dfrac{1}{3} x^2 h .

For right triangle C O H COH we have:

R 2 = x 2 2 + ( h R ) 2 = x 2 2 + h 2 2 h R + R 2 x 2 + 2 h 2 4 h R = 0 x 2 = 4 h R 2 h 2 R^2 = \dfrac{x^2}{2} + (h - R)^2 = \dfrac{x^2}{2} + h^2 - 2hR + R^2 \implies x^2 + 2h^2 - 4hR = 0 \implies x^2 = 4hR - 2h^2 \implies

V p ( h ) = 1 3 ( 4 h 2 R 2 h 3 ) d V p d h = 2 h 3 ( 4 R 3 h ) = 0 V_{p}(h) = \dfrac{1}{3} (4h^2R - 2h^3) \implies \dfrac{dV_{p}}{dh} = \dfrac{2h}{3}(4R - 3h) = 0 and h 0 h = 4 R 3 . h \neq 0 \implies h = \dfrac{4R}{3}.

h = 4 R 3 h = \dfrac{4R}{3} maximizes V p ( h ) V_{p}(h) since d 2 V p d h 2 ( h = 4 R 3 ) = 8 R 3 < 0 \dfrac{d^2V_{p}}{dh^2}|_{(h = \dfrac{4R}{3})} =\dfrac{-8R}{3} < 0

h = 4 R 3 x 2 = 16 R 2 9 x = 4 R 3 = h . h = \dfrac{4R}{3} \implies x^2 = \dfrac{16 R^2}{9} \implies x = \dfrac{4R}{3} = h.

Using cos ( θ ) = x 2 4 h 2 + x 2 \cos(\theta) = \dfrac{-x^2}{4h^2 + x^2} where x = 4 R 3 = h cos ( θ ) = 1 5 θ = 101.53695 9 x = \dfrac{4R}{3} = h \implies \cos(\theta) = \dfrac{-1}{5} \implies \theta = \boxed{101.536959^\circ} to six decimal places.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...