More Pyramids

Geometry Level 5

Let n n be a positive integer and n > = 4 n >= 4 .

Let P n P_{n} be a pyramid whose base is a regular n g o n n - gon .

Find the angle of inclination(in degrees) made between the slant height and the base which minimizes the lateral surface area of the pyramid P n P_{n} above when the volume is held constant.

My reason for posting this problem is to show the desired angle is independent of n n .


The answer is 54.7356.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Nov 24, 2017

The desired angle is independent of n n and the work below verifies this.

For area of n g o n n - gon :

Let B C = x BC = x be a side of the n g o n n - gon , A C = A B = r AC = AB= r , A D = h AD = h^* , and B A D = 180 n \angle{BAD} = \dfrac{180}{n} .

x 2 = r sin ( 180 n ) r = x 2 sin ( 180 n ) h = x 2 cot ( 180 n ) A A B C = 1 4 cot ( 180 n ) x 2 \dfrac{x}{2} = r \sin(\dfrac{180}{n}) \implies r = \dfrac{x}{2 \sin(\dfrac{180}{n})} \implies h^* = \dfrac{x}{2} \cot(\dfrac{180}{n}) \implies A_{\triangle{ABC}} = \dfrac{1}{4} \cot(\dfrac{180}{n}) x^2 \implies

A n g o n = n 4 cot ( 180 n ) x 2 A_{n - gon} = \dfrac{n}{4} \cot(\dfrac{180}{n}) x^2 \implies the Volume of the pyramid V p = n 12 cot ( 180 n ) x 2 H V_{p} = \dfrac{n}{12} \cot(\dfrac{180}{n}) x^2 H

Let A C = H AC = H be the height of the pyramid, B C = h BC = h^* , and A B = h AB = h' be the slant height of the pyramid and m C B A = θ m\angle{CBA} = \theta

The lateral surface area S = n 2 x h S = \dfrac{n}{2} x h' .

h = x 2 cot ( 180 n ) = h cos ( θ ) x = 2 tan ( 180 n ) cos ( θ ) h h^* = \dfrac{x}{2} \cot(\dfrac{180}{n}) = h' \cos(\theta) \implies x = 2 \tan(\dfrac{180}{n}) \cos(\theta) h' and H = h sin ( θ ) H = h' \sin(\theta) and letting u ( n ) = tan ( 180 n ) u(n) = \tan(\dfrac{180}{n}) \implies V p = n 3 u ( n ) cos 2 ( θ ) sin ( θ ) h 3 = K V_{p} = \dfrac{n}{3} u(n) \cos^2(\theta) \sin(\theta) h'^3 = K and S = n u ( n ) c o s ( θ ) h 2 . S = n * u(n) cos(\theta) h'^2.

V p = n 3 u ( n ) cos 2 ( θ ) sin ( θ ) h 3 = K h = ( 3 K n u ( n ) c o s 2 ( θ ) s i n ( θ ) ) 1 3 S ( θ ) = j ( n ) ( s e c ( θ ) ) 1 3 ( c s c ( θ ) ) 2 3 V_{p} = \dfrac{n}{3} u(n) \cos^2(\theta) \sin(\theta) h'^3 = K \implies h' = (\dfrac{3K}{n * u(n_) cos^2(\theta) sin(\theta)})^{\dfrac{1}{3}} \implies S(\theta) = j(n) * (sec(\theta))^{\dfrac{1}{3}} (csc(\theta))^{\dfrac{2}{3}} , where j ( n ) = ( 9 k 2 n u ( n ) ) 1 3 j(n) = (9 k^2 n * u(n))^{\dfrac{1}{3}}

d S d θ = j ( n ) 3 ( s e c θ ) 1 3 ( csc θ ) 2 3 ( tan θ 2 cot θ ) = 0 \implies \dfrac{dS}{d\theta} = \dfrac{j(n)}{3} (sec\theta)^\dfrac{1}{3} (\csc\theta)^\dfrac{2}{3} * (\tan\theta - 2 \cot\theta) = 0 \implies

3 sin 2 θ 2 = 0 sin θ = ± 2 3 3 \sin^2\theta - 2 = 0 \implies \sin\theta = \pm \sqrt{\dfrac{2}{3}} . choosing sin θ = 2 3 θ = 54.735 6 \sin\theta = \sqrt{\dfrac{2}{3}} \implies \theta = \boxed{54.7356^\circ}

\therefore The measure of the desired angle θ \theta is independent of n n .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...