More radicals and trig

Geometry Level 4

18 + 6 5 + 10 2 5 8 \large \displaystyle\frac{\sqrt{18+6\sqrt{5}}+\sqrt{10-2\sqrt{5}}}{8}

The value of the expression above is equal to the sine of a positive acute angle. What is the measure of this principle angle in degrees?


The answer is 84.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mas Mus
Oct 9, 2015

Remember that ( x + y ) + 2 x y = x + y \sqrt{(x+y)+2\sqrt{xy}}=\sqrt{x}+\sqrt{y}

Let

sin ( α + β ) = 18 + 6 5 + 10 2 5 8 = 1 2 ( 3 + 15 4 ) + 1 2 ( 10 2 5 4 ) = 1 2 ( 10 2 5 4 ) + 1 2 3 ( 1 + 5 4 ) \begin{array}{c}&\sin(\alpha+\beta)&=\frac{\sqrt{18+6\sqrt{5}}~+~\sqrt{10-2\sqrt{5}}}{8}=\frac{1}{2}\left(\frac{\sqrt{3}+\sqrt{15}}{4}\right)+\frac{1}{2}\left(\frac{\sqrt{10-2\sqrt{5}}}{4}\right)\\&=\frac{1}{2}\left(\frac{\sqrt{10-2\sqrt{5}}}{4}\right)+\frac{1}{2}\sqrt{3}\left(\frac{1+\sqrt{5}}{4}\right)\end{array}

Note that α + β \alpha+\beta is an acute angel so α + β < 9 0 \alpha+\beta<90^{\circ}

1 2 ( 10 2 5 4 ) + 1 2 3 ( 1 + 5 4 ) = sin 3 0 cos β + cos 3 0 sin β \frac{1}{2}\left(\frac{\sqrt{10-2\sqrt{5}}}{4}\right)+\frac{1}{2}\sqrt{3}\left(\frac{1+\sqrt{5}}{4}\right)=\sin30^{\circ}\cos\beta+\cos30^{\circ}\sin\beta

Now, from this , we know that 1 + 5 4 = sin 5 4 \frac{1+\sqrt{5}}{4}=\sin54^{\circ} . Thus, α + β = 8 4 \alpha+\beta=84^{\circ}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...