More than a system

Algebra Level 5

{ x 1 + 2 y + 1 = y + 9 4 x 1 1 + y + 1 + y + 1 1 + x 1 = 1 3 \large\begin{cases} \sqrt{x-1}+2\sqrt{y+1}=y+\frac{9}{4} \\ \frac{x-1}{1+\sqrt{y+1}}+\frac{y+1}{1+\sqrt{x-1}}=\frac{1}{3}\end{cases} Give the product of all the solutions to the system above, give your answer to 4 decimal places.

Clarification: If the system has the solutions ( x 1 ; y 1 ) , ( x 2 ; y 2 ) , (x_1;y_1),(x_2;y_2),\ldots then the product is x 1 y 1 x 2 y 2 x_1y_1x_2y_2 \cdots .


The answer is -0.9375.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
Jan 3, 2017

The constrain of x , y x, y are x 1 x\geq 1 and y 1 y\geq -1 . First, we set a = x 1 0 a=\sqrt{x-1}\geq 0 and b = y + 1 0 b=\sqrt{y+1}\geq 0 , we'll get { a + 2 b = b 2 + 5 4 ( 1 ) a 2 1 + b + b 2 1 + a = 1 3 ( 2 ) \begin{cases} a+2b=b^2+\frac{5}{4} \ (1) \\ \frac{a^2}{1+b}+\frac{b^2}{1+a}=\frac{1}{3} \ (2)\end{cases} Now we consider ( 2 ) (2) , we see that L H S ( 2 ) T i t u s ( a + b ) 2 2 + a + b ( 3 ) LHS_{(2)}\stackrel{Titu's}\geq\frac{(a+b)^2}{2+a+b} \ (3) From ( 1 ) (1) we get a + b = b 2 b + 5 4 a+b=b^2-b+\frac{5}{4} , so now we set t = a + b = b 2 b + 5 4 t=a+b=b^2-b+\frac{5}{4} R H S ( 3 ) = t 2 t + 2 = t + 2 + 4 t + 2 4 RHS_{(3)}=\frac{t^2}{t+2}=t+2+\frac{4}{t+2}-4 We have t = b 2 b + 5 4 1 t=b^2-b+\frac{5}{4}\geq 1 , so it can be predicted that R H S ( 3 ) RHS_{(3)} reaches its minimum value when t = 1 t=1 , so we do a little manipulation, combining with AM-GM R H S ( 3 ) = t + 2 + 9 t + 2 5 t + 2 4 2 ( t + 2 ) 9 t + 2 5 1 + 2 4 = 1 3 = R H S ( 2 ) RHS_{(3)}=t+2+\frac{9}{t+2}-\frac{5}{t+2}-4\geq 2\sqrt{(t+2)\frac{9}{t+2}}-\frac{5}{1+2}-4=\frac{1}{3}=RHS_{(2)} So finally we get L H S ( 2 ) R H S ( 2 ) LHS_{(2)}\geq RHS_{(2)} , the equality happens when { a = b t = b 2 b + 5 4 = 1 \begin{cases} a=b \\ t=b^2-b+\frac{5}{4}=1\end{cases} Solving the system and we'll get ( x , y ) = ( 5 4 , 3 4 ) (x,y)=\big(\frac{5}{4},\frac{-3}{4}\big) as the solution, therefore the product is 0.9375 -0.9375

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...