Morning coffe

Algebra Level 3

If a + b = 1 a + b = 1 and a 2 + b 2 = 2 a^2 + b^2 = 2 , with a > b a > b , then

a 3 + b 3 a 3 b 3 = m 3 n \frac{ a^3 + b^3 }{ a^3 - b^3 } =\frac{ m \sqrt 3 }{ n }

where m m and n n are positive coprime integers, find m + n m + n .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 16, 2017

( a + b ) 2 = a 2 + 2 a b + b 2 1 = 2 + 2 a b a b = 1 2 \begin{aligned} (a+b)^2 & = a^2 + 2ab + b^2 \\ 1 & = 2 + 2ab \\ \implies ab & = - \frac 12 \end{aligned}

( a b ) 2 = a 2 2 a b + b 2 = 2 + 1 a b = 3 for a > b \begin{aligned} (a-b)^2 & = a^2 - 2ab + b^2 \\ & = 2 + 1 \\ \implies a-b & = \sqrt 3 & \small \color{#3D99F6} \text{for }a>b \end{aligned}

Now, we have:

a 3 + b 3 a 3 b 3 = ( a + b ) ( a 2 a b + b 2 ) ( a b ) ( a 2 + a b + b 2 ) = ( 1 ) ( 2 + 1 2 ) 3 ( 2 1 2 ) = 5 2 3 3 2 = 5 3 3 = 5 3 9 \begin{aligned} \frac {a^3+b^3}{a^3-b^3} & = \frac {(a+b)(a^2-ab+b^2)}{(a-b)(a^2+ab+b^2)} \\ & = \frac {(1)\left(2+\frac 12\right)}{\sqrt 3\left(2-\frac 12\right)} \\ & = \frac {\frac 52}{\frac {3\sqrt 3}2} = \frac 5{3\sqrt 3} = \frac {5\sqrt 3}9 \end{aligned}

m + n = 5 + 9 = 14 \implies m+n = 5+9 = \boxed{14} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...