Mosco Olympiad (Part II)

Algebra Level 4

Find the sum of digits of the number below.

6666666 6 666 times × 3333333 3 666 times \underbrace{6666666\ldots6}_{\text{666 times}} \times \underbrace{3333333\ldots3}_{\text{666 times}}


The answer is 5994.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sravanth C.
Dec 8, 2016

We can observe that

6 × 3 = 18 66 × 33 = 2178 666 × 333 = 221778 = 6666666 6 n times × 3333333 3 n times = 2222222 2 (n-1) times 1 7777777 7 (n-1) times 8 \begin{aligned} 6\times 3&=18\\ 66\times 33&=2178\\ 666\times 333&=221778\\ \cdots &=\cdots \\ \underbrace{6666666\ldots6}_{\text{n times}} \times \underbrace{3333333\ldots3}_{\text{n times}}&=\underbrace{2222222\ldots2}_{\text{(n-1) times}}1\underbrace{7777777\dots7}_{\text{(n-1) times}}8\\ \end{aligned}

Therefore the sum of digits if n = 666 n=666 is 665 ( 2 + 7 ) + 9 = 5994 665(2+7)+9=\boxed{5994} .

This is a good starting point. Can you justify why the pattern occurs?

Jason Dyer Staff - 4 years, 6 months ago

we canobserve that

6 × 3 = 18 66 × 33 = 2178 666 × 333 = 221778 6\times 3=18\\ 66\times 33=2178\\ 666\times 333=221778\\

if we count up the digit the pattern will go on 9 × n 9\times n for sum of the digit Nth

so the answer would be

9 × 666 = 5994 9\times 666\quad =\quad 5994

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...