f ( 1 ) f ( 3 ) f ( 5 ) f ( 7 ) = = = = − 6 − 3 6 − 5 0 0
f ( x ) is a 4 th degree polynomial with leading coefficient 2 satisfying the above condition.
Find the value of f ( 8 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Well done, figuring out the function. By the way you should edit the way you wrote f(8).
f
(
x
)
=
2
(
x
−
1
)
(
x
−
3
)
(
x
−
5
)
(
x
−
7
)
+
g
(
x
)
where g(x) is a unique polynomial of degree 3 satisfying the above conditions.
Consider,
p
1
(
x
)
=
(
x
−
3
)
(
x
−
5
)
(
x
−
7
)
p
1
(
1
)
=
−
4
8
p
3
(
x
)
=
(
x
−
1
)
(
x
−
5
)
(
x
−
7
)
p
3
(
3
)
=
1
6
p
5
(
x
)
=
(
x
−
1
)
(
x
−
3
)
(
x
−
7
)
p
5
(
5
)
=
−
1
6
p
7
(
x
)
=
(
x
−
1
)
(
x
−
3
)
(
x
−
5
)
p
7
(
7
)
=
4
8
Then let,
h
(
x
)
=
p
1
(
1
)
f
(
1
)
×
p
1
(
x
)
+
p
3
(
3
)
f
(
3
)
×
p
3
(
x
)
+
p
5
(
5
)
f
(
5
)
×
p
5
(
x
)
+
p
7
(
7
)
f
(
7
)
×
p
7
(
x
)
h
(
x
)
is a polynomial satisfying all the required conditions. Since the polynomial is unique,
h
(
x
)
=
g
(
x
)
∴ g ( x ) = p 1 ( 1 ) f ( 1 ) × p 1 ( x ) + p 3 ( 3 ) f ( 3 ) × p 3 ( x ) + p 5 ( 5 ) f ( 5 ) × p 5 ( x ) + p 7 ( 7 ) f ( 7 ) × p 7 ( x )
f
(
x
)
=
2
(
x
−
1
)
(
x
−
3
)
(
x
−
5
)
(
x
−
7
)
+
p
1
(
1
)
f
(
1
)
×
p
1
(
x
)
+
p
3
(
3
)
f
(
3
)
×
p
3
(
x
)
+
p
5
(
5
)
f
(
5
)
×
p
5
(
x
)
+
p
7
(
7
)
f
(
7
)
×
p
7
(
x
)
f
(
x
)
=
2
(
x
−
1
)
(
x
−
3
)
(
x
−
5
)
(
x
−
7
)
+
−
4
8
−
6
×
(
x
−
3
)
(
x
−
5
)
(
x
−
7
)
+
1
6
−
3
6
×
(
x
−
1
)
(
x
−
5
)
(
x
−
7
)
+
−
1
6
−
5
0
×
(
x
−
1
)
(
x
−
3
)
(
x
−
7
)
)
+
4
8
0
×
(
x
−
1
)
(
x
−
3
)
(
x
−
5
)
f ( 8 ) = 2 × 1 0 5 + 4 8 6 × 1 5 − 1 6 3 6 × 2 1 + 1 6 5 0 × 3 5 + 0
f ( 8 ) = 2 1 0 + 8 1 5 + 1 6 9 9 4
f
(
8
)
=
2
1
0
+
1
6
3
0
+
9
9
4
f
(
8
)
=
2
1
0
+
1
6
1
0
2
4
=
2
1
0
+
2
4
2
1
0
=
2
1
0
+
2
6
=
2
1
0
+
6
4
=
2
7
4
Problem Loading...
Note Loading...
Set Loading...
f(x) =2(x-1)(x-3)(x-5)(x-7)+g(x)
g(x)=(x-7)*h(x) as (x-7) is a factor of f(x)
g(1)=(1-7)*(1 × 1)
g(3)=(3-7)*(3 × 3)
∴ h ( x ) = x 2
f ( x ) = 2 ( x − 1 ) ( x − 3 ) ( x − 5 ) ( x − 7 ) + ( x − 7 ) x 2
f ( 8 ) = 2 × 7 × 5 × 3 × 1 + 6 4 = 2 7 4 .