Moving plane

A block of mass 1kg is held motionless on a frictionless inclined plane of mass 10 kg. The plane rests on a frictionless horizontal surface. The angle of inclination of the plane with horizontal is 45(degrees). The block is now released, what is the horizontal acceleration of the inclined plane?


The answer is 0.476.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Chase
Feb 13, 2018

Define the position and velocity of the block, given that the ramp can move ( θ \theta is the ramp angle with the horizontal).

x 2 = x 1 + α c o s θ y 2 = α s i n θ x 2 ˙ = x 1 ˙ + α ˙ c o s θ y 2 ˙ = α ˙ s i n θ v 2 2 = x 2 ˙ 2 + y 2 ˙ 2 = x 1 ˙ 2 + 2 x 1 ˙ α ˙ c o s θ + α ˙ 2 \large{x_2 = x_1 + \alpha \, cos \theta \\ y_2 = \alpha \, sin \theta \\ \dot{x_2} = \dot{x_1} + \dot{\alpha} \, cos \theta \\ \dot{y_2} = \dot{\alpha} \, sin \theta \\ v_2^2 = \dot{x_2}^2 + \dot{y_2}^2 = \dot{x_1}^2 + 2 \, \dot{x_1} \, \dot{\alpha} \, cos \theta + \dot{\alpha}^2 }

Kinetic Energy:

E = 1 2 m 1 x 1 ˙ 2 + 1 2 m 2 ( x 1 ˙ 2 + 2 x 1 ˙ α ˙ c o s θ + α ˙ 2 ) \large{E = \frac{1}{2} m_1 \, \dot{x_1}^2 + \frac{1}{2} m_2 \, (\dot{x_1}^2 + 2 \, \dot{x_1} \, \dot{\alpha} \, cos \theta + \dot{\alpha}^2)}

Potential Energy:

U = m 2 g α s i n θ \large{U = m_2 \, g \, \alpha \, sin \theta}

Lagrangian:

L = E U = 1 2 m 1 x 1 ˙ 2 + 1 2 m 2 ( x 1 ˙ 2 + 2 x 1 ˙ α ˙ c o s θ + α ˙ 2 ) m 2 g α s i n θ \large{L = E - U = \frac{1}{2} m_1 \, \dot{x_1}^2 + \frac{1}{2} m_2 \, (\dot{x_1}^2 + 2 \, \dot{x_1} \, \dot{\alpha} \, cos \theta + \dot{\alpha}^2) - m_2 \, g \, \alpha \, sin \theta}

Equations of Motion:

d d t L x 1 ˙ = L x 1 d d t L α ˙ = L α \large{\frac{d}{dt} \frac{\partial{L}}{\partial{\dot{x_1}}} = \frac{\partial{L}}{\partial{x_1}} \\ \frac{d}{dt} \frac{\partial{L}}{\partial{\dot{\alpha}}} = \frac{\partial{L}}{\partial{\alpha}}}

Evaluating the equations of motion yields:

( m 1 + m 2 ) x 1 ¨ + m 2 c o s θ α ¨ = 0 m 2 c o s θ x 1 ¨ + m 2 α ¨ = m 2 g s i n θ \large{(m_1 + m_2) \, \ddot{x_1} + m_2 \, cos \theta \, \ddot{\alpha} = 0 \\ m_2 \, cos \theta \, \ddot{x_1} + m_2 \, \ddot{\alpha} = -m_2 \, g \, sin \theta}

Substituting in for the α ¨ \ddot{\alpha} term yields:

x 1 ¨ = m 2 g s i n θ c o s θ m 1 + m 2 m 2 c o s 2 θ \large{\ddot{x_1} = \frac{m_2 \, g \, sin \theta \, cos \theta}{m_1 + m_2 - m_2 \, cos^2 \theta}}

Plugging in numbers (assuming g = 10 g = 10 ):

x 1 ¨ = ( 1 ) ( 10 ) ( 1 / 2 ) 10 + 1 ( 1 ) ( 1 / 2 ) 0.47619 \large{\ddot{x_1} = \frac{(1) \, (10) \, (1/2)}{10 + 1 - (1) \, (1/2)} \approx 0.47619 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...