Mr. Doppler in a circle

A tuning fork is moving in clockwise direction on a circle centered at origin of radius 2 m \sqrt { 2 }m with speed 125 m / s 125m/s . Find the coordinates ( a , b ) (a,b) of the tuning fork when the stationary observer at ( 1 , 3 ) (1,3) hears maximum frequency.

Select a 6 + b 6 {a}^{6}+{b}^{6} .

D e t a i l s Details

Velocity of sound = v s = 1000 π { v }_{ s }=\frac { 1000 }{ \pi }

This problem is originally part of set Mechanics problems by Abhishek Sharma .
Try more problems here .
8 4 5 3 7 2 6 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ayush Verma
May 8, 2015

Follow these steps,

1. F i n d t h e p o s i t i o n o f f o r k w h e n p a t h o f s o u n d w a v e i s t a n g e n t i a l t o c i r c l e a n d t o w a r d s t h e o b s e r v e r ( n o t a w a y f r o m o b s e r v e r ) i t w i l l b e ( 1 , 1 ) b u t t h i s i s n o t ( a , b ) a s ( a , b ) i s p o s i t i o n w h e n o b s e r v e r h e a r s t h e s o u n d . ( a n s w e r V w i l l n o t b e ( 1 ) 6 + ( 1 ) 6 = 2 ) 2. F i n d t i m e t a k e n b y w a v e t o r e a c h t o o b s e r v e r b y d i v i d i n g d i s t a n c e b / w ( 1 , 1 ) & ( 1 , 3 ) b y v e l o c i t y o f s o u n d . t = ( 3 1 ) 2 + ( 1 + 1 ) 2 1000 / π = π 2 500 s e c 3. F i n d a n g l e c o v e r e d b y f o r k d u r i n g t i m e t , θ = ω t = v r t = 125 2 × π 2 500 = π 4 L e t ( a , b ) = ( 2 cos α , 2 sin α ) α = 3 π 4 π 4 = π 2 ( a , b ) = ( 2 cos α , 2 sin α ) = ( 0 , 2 ) a 6 + b 6 = 0 + 8 = 8 1.Find\quad the\quad position\quad offork\quad when\quad path\quad ofsound\quad wave\quad is\quad \\ \\ tangential\quad to\quad circle\quad and\quad towards\quad the\quad observer\\ \\ (not\quad away\quad from\quad observer)\quad it\quad will\quad be\quad (-1,1)\quad but\quad this\quad is\quad \\ \\ not\quad (a,b)\quad as\quad (a,b)\quad is\quad position\quad when\quad observer\quad hears\quad \\ \\ the\quad sound.\quad (answerVwill\quad not\quad be\quad (-1)^{ 6 }+(1)^{ 6 }=2\quad )\\ \\ 2.Find\quad time\quad taken\quad by\quad wave\quad to\quad reach\quad to\quad observer\quad by\quad \\ \\ dividing\quad distance\quad b/w\quad (-1,1)\& (1,3)\quad by\quad velocity\quad of\quad sound.\\ \\ t=\cfrac { \sqrt { { \left( 3-1 \right) }^{ 2 }+{ \left( 1+1 \right) }^{ 2 } } }{ 1000/\pi } =\cfrac { \pi \sqrt { 2 } }{ 500 } sec\\ \\ 3.Find\quad angle\quad covered\quad by\quad fork\quad during\quad time\quad t,\\ \\ \theta =\omega t=\cfrac { v }{ r } t=\cfrac { 125 }{ \sqrt { 2 } } \times \cfrac { \pi \sqrt { 2 } }{ 500 } =\cfrac { \pi }{ 4 } \\ \\ Let\quad \left( a,b \right) =\left( \sqrt { 2 } \cos { \alpha } ,\sqrt { 2 } \sin { \alpha } \right) \\ \\ \alpha =\cfrac { 3\pi }{ 4 } -\cfrac { \pi }{ 4 } =\cfrac { \pi }{ 2 } \\ \\ \left( a,b \right) =\left( \sqrt { 2 } \cos { \alpha } ,\sqrt { 2 } \sin { \alpha } \right) =\left( 0,\sqrt { 2 } \right) \\ \\ \Rightarrow { a }^{ 6 }+{ b }^{ 6 }=0+8=8\\

I misread the question, and thought (-1,1 ) was the answer :(.

A Former Brilliant Member - 5 years, 7 months ago

My calculations !!!! argh ! :(

Keshav Tiwari - 6 years, 1 month ago

Nicely done.

Abhishek Sharma - 6 years, 1 month ago

I over-thought this problem, and so I spent way too long on it, only to get the wrong answer. The original level is too high, and so it's misleading :/ Otherwise, I would have solved this almost instantly without having to do complicated calculations.

Jake Lai - 6 years, 1 month ago

Log in to reply

Many people selected 2 as the answer which led to increase in the rating of this problem. I agree that it is not a Level 5 problem.

Abhishek Sharma - 6 years ago

Why doesnt my ans came exactly 8?

I did like this.

For the position of tangent , the point of contact is given by ( a , b ) (a,b) .

So We know, equation of tangent = y = m x + a 1 + m 2 y= mx+a\sqrt{1+m^2}

3 = m + 2 + 2 m 2 \implies 3=m+\sqrt{2+2m^2}

9 + m 2 6 m = 2 + 2 m 2 \implies 9+m^2-6m=2+2m^2 \

m 2 + 6 m 7 = 0 \implies m^2+6m-7=0

( m 1 ) ( m + 7 ) = 0 \implies (m-1)(m+7)=0

By drawing the figure we will know that we need an equation with Negetive slope but positive intercepts,

m = 7 y = 7 x + 2 1 + 49 \implies m=-7 \implies y=-7x+2\sqrt{1+49}

y = 7 x + 10 \implies y=-7x+10

y 2 = ( 10 7 x ) 2 \implies y^2=(10-7x)^2

x 2 + ( 10 7 x ) 2 = 2 \implies x^2+(10-7x)^2=2

25 x 2 70 x + 49 = 0 \implies 25x^2-70x+49=0

x = 7 5 , y = 1 5 \implies x=\dfrac{7}{5} , y=\dfrac{1}{5}

x 6 + y 6 = 7 6 + 1 5 6 \implies x^6+y^6=\dfrac{7^6+1}{5^6}

8 \approx \boxed{8}

Why do i need to approximate in this case?

Md Zuhair - 3 years, 4 months ago

The clue is: the path of the sound wave to the observer must be tangent to the circular path to attain maximum frequency.

Brilliant question

VANSH SARDANA - 1 year, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...