mth root of unity?

Geometry Level 5

Given that A k = k ( k 1 ) 2 cos k ( k 1 ) π 2 A_k = \frac {k(k - 1)}2\cos\frac {k(k - 1)\pi}2

find A 19 + A 20 + + A 98 . |A_{19} + A_{20} + \cdots + A_{98}|.

Try my set


The answer is 40.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 15, 2015

A k = k ( k 1 ) 2 cos k ( k 1 ) π 2 = { + k ( k 1 ) 2 if k ( k 1 ) 2 is even k ( k 1 ) 2 if k ( k 1 ) 2 is odd A_k = \dfrac {k(k-1)}{2} \cos{\dfrac{k(k-1)\pi}{2}} = \begin{cases} +\dfrac {k(k-1)}{2} & \text{if } \dfrac {k(k-1)}{2} \text{ is even} \\ -\dfrac {k(k-1)}{2} & \text{if } \dfrac {k(k-1)}{2} \text{ is odd} \end{cases}

k = 19 98 A k = 19 ( 18 ) 2 + 20 ( 19 ) 2 + 21 ( 20 ) 2 22 ( 21 ) 2 . . . 98 ( 97 ) 2 = 19 21 + 23 25 + 27 . . . 93 + 95 97 = 2 2 2 . . . 2 = 20 ( 2 ) = 40 \begin{aligned} \displaystyle \sum_{k=19}^{98} {A_k} & = -\frac{19(18)}{2} + \frac{20(19)}{2} + \frac{21(20)}{2} - \frac{22(21)}{2} - ... - \frac{98(97)}{2} \\ & = 19 -21 + 23 - 25 + 27 -... -93+95-97 \\ & = - 2 -2 - 2 -... -2 = 20(-2) = -40 \end{aligned}

A 19 + A 20 + A 21 + . . . + A 98 = 40 = 40 \Rightarrow |A_{19}+A_{20}+A_{21}+...+A_{98}| = |-40| = \boxed{40}

1
2
3
4
5
6
7
8
9
ctr = 0
for i in range(19,99):
    n = i*(i-1)/2
    if n%2:
        ctr -= n
    else:
        ctr += n

print ctr  

What is this ?

Refaat M. Sayed - 6 years, 1 month ago

A calculator.

Edwin Ma - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...