Multi Inductor/Conductor Circuit

The image above depicts an LC circuit consisting of four inductors ( L L ) and four capacitors ( C C ). The conductors have the following conductance values: C 1 = 20 F C_1=20F , C 2 = 5 F C_2=5F , C 3 = 7 F C_3=7F , and C 4 = 8 F C_4=8F . The inductances of the inductors are as follows: L 1 = 9 H L_1=9H , L 2 = 12 H L_2=12H , L 3 = 18 H L_3=18H , and L 4 = 6 H L_4=6H . Determine the angular frequency ( ω \omega ) of the circuit in radians per second.

Note : ω = 1 L C \omega = \dfrac{1}{\sqrt{LC}} .


David's Electricity Set


The answer is 0.1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Hontz
May 26, 2016

C 2 , 3 , 4 = C 2 + C 3 + C 4 = 5 + 7 + 8 = 20 F 1 C c i r c u i t = 1 C 1 + 1 C 2 , 3 , 4 = 1 20 + 1 20 = 1 10 C c i r c u i t = 10 F C_{2,3,4}=C_2+C_3+C_4=5+7+8=20F \\ \frac{1}{C_{circuit}}= \frac{1}{C_1}+\frac{1}{C_{2,3,4}}=\frac{1}{20}+\frac{1}{20} = \frac{1}{10} \Rightarrow \boxed{C_{circuit}=10F} 1 L 1 , 2 , 3 = 1 L 1 + 1 L 2 + 1 L 3 = 1 9 + 1 12 + 1 18 = 1 4 L 1 , 2 , 3 = 4 H L c i r c u i t = L 4 + L 1 , 2 , 3 = 6 + 4 = L c i r c u i t = 10 H \frac{1}{L_{1,2,3}}= \frac{1}{L_1}+\frac{1}{L_2}+\frac{1}{L_3}=\frac{1}{9}+\frac{1}{12}+\frac{1}{18}=\frac{1}{4} \Rightarrow L_{1,2,3}=4H \\ L_{circuit}=L_4+L_{1,2,3}=6+4=\boxed{L_{circuit}=10H} ω = 1 L C = 1 10 × 10 = 1 100 = 1 10 = ω = 0.1 r a d / s \omega=\frac{1}{\sqrt{LC}}=\frac{1}{\sqrt{10 \times 10}}=\frac{1}{\sqrt{100}}=\frac{1}{10}=\boxed{\omega =0.1 rad/s}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...