Multi Inductor/Resistor Circuit

In order to prepare an LR circuit, you arrange a 14 V 14V battery with five resistors ( R R ) and four inductors ( L L ), as shown above. The resistors in this circuit have the following resistances: R 1 = 6 Ω R_1=6Ω , R 2 = 12 Ω R_2=12Ω , R 3 = 12 Ω R_3=12Ω , R 4 = 5 Ω R_4=5Ω , and R 5 = 7 Ω R_5=7Ω . The inductances of the inductors are as follows: L 1 = 18 H L_1=18H , L 2 = 9 H L_2=9H , L 3 = 6 H L_3=6H , and L 4 = 3 H L_4=3H . Determine the time constant ( τ \tau ) of this LR circuit in seconds.

Note: τ = L c i r c u i t R c i r c u i t \tau=\frac{L_{circuit}}{R_{circuit}}


David's Electricity Set


The answer is 0.8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Hontz
May 26, 2016

In simplifying resistors and inductors, the math depends on whether they are in parallel or in series. R 4 , 5 = R 4 + R 5 = 5 + 7 = 12 Ω 1 R 3 , 4 , 5 = 1 R 3 + 1 R 4 , 5 = 1 12 + 1 12 = 1 6 R 3 , 4 , 5 = 6 Ω 1 R 1 , 2 = 1 R 1 + 1 R 2 = 1 6 + 1 12 = 1 4 R 1 , 2 = 4 Ω R c i r c u i t = R 1 , 2 + R 3 , 4 , 5 = 4 + 6 = 10 Ω R_{4,5} = R_4+R_5=5+7 = 12Ω \\ \frac{1}{R_{3,4,5}} = \frac{1}{R_3} + \frac{1}{R_{4,5}} = \frac{1}{12}+\frac{1}{12} = \frac{1}{6} \Rightarrow R_{3,4,5}=6Ω \\ \frac{1}{R_{1,2}} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{6}+\frac{1}{12} = \frac{1}{4} \Rightarrow R_{1,2}=4Ω \\ R_{circuit} = R_{1,2}+R_{3,4,5} = 4+6= \boxed{10Ω}

1 L 1 , 2 = 1 L 1 + 1 L 2 = 1 18 + 1 9 = 1 6 L 1 , 2 = 6 H 1 L 3 , 4 = 1 L 3 + 1 L 4 = 1 6 + 1 3 = 1 2 L 3 , 4 = 2 H L c i r c u i t = L 1 , 2 + L 3 , 4 = 6 + 2 = 8 H \frac{1}{L_{1,2}}=\frac{1}{L_1}+\frac{1}{L_2}=\frac{1}{18}+\frac{1}{9} =\frac{1}{6} \Rightarrow L_{1,2}=6H \\ \frac{1}{L_{3,4}}= \frac{1}{L_3}+\frac{1}{L_4}=\frac{1}{6}+\frac{1}{3} =\frac{1}{2} \Rightarrow L_{3,4}=2H \\ L_{circuit}=L_{1,2}+L_{3,4}=6+2=\boxed{8H}

τ = L c i r c u i t R c i r c u i t = 8 H 10 Ω = 0.8 s \tau = \frac{L_{circuit}}{R_{circuit}}=\frac{8H}{10Ω} = \boxed{0.8s}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...