Multidimensional Vectors

Geometry Level 3

The angle between the 2015 2015 -dimensional vectors a \vec{a} and b \vec{b} is 3 0 30^{\circ} . Let a = 8 \|\vec{a} \| = \sqrt{8} and b = 96 \|\vec{b} \| = \sqrt{96} . Find the value of a b 2 \|\vec{a} - \vec{b} \| ^2 .

Image Credit: Wikimedia Oleg Alexandrov


The answer is 56.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Justin Wong
Apr 20, 2015

The fact that the vectors are 2015-dimensional is unnecessary; this applies to vectors of all dimensions. We'll can generalize this and represent a \vec{a} as a 1 , a 2 , , a n \langle a_{1},a_{2},\dots,a_{n} \rangle and b \vec{b} as b 1 , b 2 , , b n \langle b_{1},b_{2},\dots,b_{n} \rangle .

Using the definition of dot product of two vectors, a b = a b cos θ \vec{a} \cdot \vec{b} = \|\vec{a} \| \| \vec{b} \| \cos \theta

a 1 b 1 + a 2 b 2 + + a n b n = ( 8 ) ( 96 ) ( 3 2 ) = 24 a_{1} b_{1} + a_{2} b_{2} + \cdots + a_{n} b_{n} = (\sqrt{8})(\sqrt{96})(\frac{\sqrt{3}}{2}) = 24

Squaring the initial equations using the definition of magnitude yields a 1 2 + a 2 2 + + a n 2 = 8 a_{1}^2+a_{2}^2+\dots+a_{n}^2 = 8 and b 1 2 + b 2 2 + + b n 2 = 96 b_{1}^2+b_{2}^2+\dots+b_{n}^2 = 96 .

Recognizing that a b 2 = ( a 1 b 1 ) , ( a 2 b 2 ) , , ( a n b n ) 2 \|\vec{a} - \vec{b} \|^2 = \| \langle (a_{1}-b_{1}), (a_{2}-b_{2}),\dots, (a_{n}-b_{n}) \rangle \|^2 is key because that leads to a b 2 = a 1 2 2 a 1 b 1 + b 1 2 + a 2 2 2 a 2 b 2 + b 2 2 + + a n 2 2 a n b n + b n 2 \|\vec{a}-\vec{b}\|^2 = a_{1}^2-2a_{1}b_{1}+b_{1}^2+a_{2}^2-2a_{2}b_{2}+b_{2}^2+\dots+a_{n}^2-2a_{n}b_{n}+b_{n}^2 .

This is the sum of the squares of the a a and b b terms minus twice the sum of the a n b n a_{n}b_{n} products, which we found above! Therefore, a b 2 = 8 + 96 2 ( 24 ) = 56 \|\vec{a} - \vec{b} \|^2 = 8 + 96 - 2(24) = 56 .

Tijmen Veltman
Apr 21, 2015

The vectors a \vec{a} , b \vec{b} and a b \vec{a}-\vec{b} form a triangle. We can use the law of cosines to calculate:

a b 2 = a 2 + b 2 2 a b cos ( 3 0 ) ||\vec{a}-\vec{b}||^2=||\vec{a}||^2+||\vec{b}||^2-2||\vec{a}||\cdot||\vec{b}||\cos(30^\circ)

= 8 + 96 2 8 × 96 × 1 2 3 =8+96-2\sqrt{8\times 96}\times \frac12\sqrt3

= 8 + 96 48 =8+96-48

= 56 . =\boxed{56}.

Thanks your solution is a nice one...

Akshat Sawarni - 5 years, 2 months ago
Peter Macgregor
Apr 21, 2015

a b 2 = ( a b ) . ( a b ) \|\vec{a}-\vec{b}\|^2=(\vec{a}-\vec{b}). (\vec{a}-\vec{b})

= a . a + b . b 2 a . b =\vec{a}.\vec{a}+\vec{b}.\vec{b}-2\vec{a}.\vec{b}

= 8 + 96 2 8 96 3 2 =8+96-2\sqrt{8}\sqrt{96}\dfrac{\sqrt{3}}{2}

= 104 8 × 8 × 4 × 3 × 3 =104-\sqrt{8\times 8\times 4\times 3 \times 3}

= 104 8 × 2 × 3 = 56 =104-8\times 2\times 3=\boxed{56}

Moderator note:

Simple. For clarity, you might want to add in a b = a b cos θ \vec{a} \cdot \vec{b} = \|\vec{a} \| \| \vec{b} \| \cos \theta .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...