Multinomial expansion

Algebra Level 4

What is the coefficient of x 7 x^7 in the expansion of ( 1 + x + 2 x 3 ) 10 ? \big(1+x+2x^3\big)^{10}?


The answer is 4080.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ayush Verma
Oct 31, 2014

Solution for those who don't know Multinomial Theorem,

( 1 + x + 2 x 3 ) 10 = r = 0 10 ( 10 r ) ( x + 2 x 3 ) r m i n m p o w e r o f x i n ( x + 2 x 3 ) r = r m a x m p o w e r o f x i n ( x + 2 x 3 ) r = 3 r , s o r 7 3 r 2 < r 7 p a s s i b l e r a r e 3 , 4 , 5 , 6 , 7 & ( x + 2 x 3 ) r = x r ( 1 + 2 x 2 ) r = x r n = 0 r ( r n ) 2 n x 2 n 2 n + r = 7 s o r o n l y o d d s o n o w o n l y p a s s i b l e ( r , n ) a r e ( 3 , 2 ) , ( 5 , 1 ) , ( 7 , 0 ) c o f f . o f x 7 i n ( 1 + x + 2 x 3 ) 10 = c o f f . o f x 7 i n { ( 10 3 ) ( x + 2 x 3 ) 3 + ( 10 5 ) ( x + 2 x 3 ) 5 + ( 10 7 ) ( x + 2 x 3 ) 7 } = { ( 10 3 ) ( 3 2 ) 2 2 + ( 10 5 ) ( 5 1 ) 2 1 + ( 10 7 ) ( 7 0 ) 2 0 } = 4080 { \left( 1+{ x }+2{ x }^{ 3 } \right) }^{ 10 }=\sum _{ r=0 }^{ 10 }{ { \left( \begin{matrix} 10 \\ r \end{matrix} \right) }{ \left( { x }+2{ x }^{ 3 } \right) }^{ r } } \\ \\ { min }^{ m }\quad power\quad of\quad x\quad in\quad { \left( { x }+2{ x }^{ 3 } \right) }^{ r }=r\\ \\ { max }^{ m }\quad power\quad of\quad x\quad in\quad { \left( { x }+2{ x }^{ 3 } \right) }^{ r }=3r,so\\ \\ r\le 7\le 3r\quad \Rightarrow \quad 2<r\le 7\\ \\ passible\quad r\quad are\quad 3,4,5,6,7\\ \\ \& \quad { \left( { x }+2{ x }^{ 3 } \right) }^{ r }={ x }^{ r }{ \left( 1+2{ x }^{ 2 } \right) }^{ r }={ x }^{ r }\sum _{ n=0 }^{ r }{ \left( \begin{matrix} r \\ n \end{matrix} \right) { 2 }^{ n }{ x }^{ 2n } } \\ \\ 2n+r=7\quad so\quad r\quad only\quad odd\\ \\ so\quad now\quad only\quad passible\quad \left( r,n \right) \quad are\quad \left( 3,2 \right) ,\left( 5,1 \right) ,\left( 7,0 \right) \\ \\ \therefore coff.\quad of\quad { x }^{ 7 }\quad in\quad { \left( 1+{ x }+2{ x }^{ 3 } \right) }^{ 10 }\\ \\ \quad \quad \quad =coff.\quad of\quad { x }^{ 7 }\quad in\quad \left\{ { \left( \begin{matrix} 10 \\ 3 \end{matrix} \right) }{ \left( { x }+2{ x }^{ 3 } \right) }^{ 3 }{ +\left( \begin{matrix} 10 \\ 5 \end{matrix} \right) }{ \left( { x }+2{ x }^{ 3 } \right) }^{ 5 }+{ \left( \begin{matrix} 10 \\ 7 \end{matrix} \right) }{ \left( { x }+2{ x }^{ 3 } \right) }^{ 7 } \right\} \\ \\ \quad \quad \quad =\left\{ \left( \begin{matrix} 10 \\ 3 \end{matrix} \right) \left( \begin{matrix} 3 \\ 2 \end{matrix} \right) { 2 }^{ 2 }+\left( \begin{matrix} 10 \\ 5 \end{matrix} \right) \left( \begin{matrix} 5 \\ 1 \end{matrix} \right) { 2 }^{ 1 }+\left( \begin{matrix} 10 \\ 7 \end{matrix} \right) \left( \begin{matrix} 7 \\ 0 \end{matrix} \right) { 2 }^{ 0 } \right\} \\ \\ \quad \quad \quad =4080

汶良 林
Aug 18, 2015

( 1 + x + 2 x 3 ) 1 0 = [ ( 1 + x ) + 2 x 3 ] 1 0 (1 + x + 2x^3)^10 = [ ( 1 + x ) + 2x^3 ]^10

You only need to consider these three terms:

(1 + x)^10

(1+x)^9 · 2x^3

(1 + x)^8 · (2x^3)^2

Other terms don't have x^7.

The coefficient of x^7 in (1 + x)^10 is 10C0 · 10C7 = 120

The coefficient of x^7 in (1+x)^9 · 2x^3 is 10C1 · 9C4 · 2 = 2520

The coefficient of x^7 in (1 + x)^8 · (2x^3)^2 is 10C2 · 8C1 · 2^2 = 1440

120 + 2520 + 1440 = 4080

1 + 10 x + 45 x 2 + 140 x 3 + 390 x 4 + 972 x 5 + 2070 x 6 + 4080 x 7 + 7605 x 8 + 12730 x 9 + 20041 x 1 0 + 30420 x 1 1 + 42020 x 1 2 + 55200 x 1 3 + 70740 x 1 4 + 81984 x 1 5 + 91680 x 1 6 + 100800 x 1 7 + 97440 x 1 8 + 94080 x 1 9 + 88704 x 2 0 + 69120 x 2 1 + 59520 x 2 2 + 46080 x 2 3 + 26880 x 2 4 + 23040 x 2 5 + 11520 x 2 6 + 5120 x 2 7 + 5120 x 2 8 + 1024 x 3 0 1 + 10 x + 45 x^2 + 140 x^3 + 390 x^4 + 972 x^5 + 2070 x^6 + 4080 x^7 + 7605 x^8 + 12730 x^9 + 20041 x^10 + 30420 x^11 + 42020 x^12 + 55200 x^13 + 70740 x^14 + 81984 x^15 + 91680 x^16 + 100800 x^17 + 97440 x^18 + 94080 x^19 + 88704 x^20 + 69120 x^21 + 59520 x^22 + 46080 x^23 + 26880 x^24 + 23040 x^25 + 11520 x^26 + 5120 x^27 + 5120 x^28 + 1024 x^30

Add {} around your exponents (10 or greater) in the LaTeX form, so the sentence won't look so funny anymore.

Tarmo Taipale - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...