Let θ = 1 1 π . Find
sec ( θ ) sec ( 2 θ ) sec ( 3 θ ) sec ( 4 θ ) sec ( 5 θ )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
P = sec 1 1 π sec 1 1 2 π sec 1 1 3 π sec 1 1 4 π sec 1 1 5 π = cos 1 1 π cos 1 1 2 π cos 1 1 3 π cos 1 1 4 π cos 1 1 5 π 1 = cos 1 1 π cos 1 1 2 π cos 1 1 4 π 1 ⋅ cos 1 1 3 π cos 1 1 6 π − 1 = sin 1 1 π cos 1 1 π cos 1 1 2 π cos 1 1 4 π sin 1 1 π ⋅ sin 1 1 3 π cos 1 1 3 π cos 1 1 6 π − sin 1 1 3 π = sin 1 1 2 π cos 1 1 2 π cos 1 1 4 π 2 sin 1 1 π ⋅ sin 1 1 6 π cos 1 1 6 π − 2 sin 1 1 3 π = sin 1 1 4 π cos 1 1 4 π 4 sin 1 1 π ⋅ sin 1 1 1 2 π − 4 sin 1 1 3 π = sin 1 1 8 π 8 sin 1 1 π ⋅ sin 1 1 1 2 π − 4 sin 1 1 3 π = sin 1 1 3 π 8 sin 1 1 π ⋅ − sin 1 1 π − 4 sin 1 1 3 π = 3 2 Note that cos ( π − x ) = − cos x Note that sin ( π − x ) = sin x Note that sin ( π + x ) = − sin x
W e h a v e i d e n t i t y Π k = 1 n − 1 C o s ( n k π ) = 2 n − 1 S i n ( 2 n π ) . L e t n = 1 1 . ∴ Π k = 1 1 1 C o s ( 1 1 k π ) = Π k = 1 1 0 C o s ( 1 1 k π ) ∗ C o s ( 1 1 1 1 π ) = 2 1 0 S i n ( 2 1 1 π ) ∗ C o s ( 1 1 1 1 π ) = 2 1 0 S i n ( 2 π ) ∗ ( − 1 ) N o t e t h a t C o s ( π − α ) = − C o s α . ⟹ C o s ( 1 1 k π ) = − C o s ( π − 1 1 k π ) ∴ Π k = 1 5 ∗ C o s ( 1 1 k π ) = − 2 1 0 S i n ( 2 1 1 π ) ∗ ( − 1 ) = 2 1 0 S i n ( 2 1 ∗ π ) = 2 5 1 . ∴ given expression= reciprocal of the above = 3 2 .
S = s e c θ × s e c 2 θ × s e c 3 θ × s e c 4 θ × s e c 5 θ
= c o s θ × c o s 2 θ t i m e s c o s 3 θ × c o s 4 θ × c o s 5 θ 1
Multiplying numerator and denominator by 2 s i n θ
= ( 2 s i n θ c o s θ ) × c o s 2 θ × c o s 3 θ × c o s 4 θ × c o s 5 θ 2 s i n θ
= s i n 2 θ × c o s 2 θ t i m e s c o s 3 θ × c o s 4 θ × c o s 5 θ 2 s i n θ
= ( 2 s i n 2 θ × c o s 2 θ ) t i m e s c o s 3 θ × c o s 4 θ × c o s 5 θ 4 s i n θ
= ( 2 s i n 4 θ × c o s 4 θ ) t i m e s c o s 3 θ × c o s 5 θ 8 s i n θ
Note that
c o s 3 θ = c o s ( 1 1 θ − 3 θ ) = c o s ( π − 3 θ ) = − c o s 8 θ
= ( 2 s i n 8 θ t i m e s ( − c o s 8 θ ) × c o s 5 θ 8 s i n θ
= ( − 2 s i n 8 θ t i m e s c o s 8 θ ) × c o s 5 θ 1 6 s i n θ = − s i n 1 6 θ × c o s 5 θ 1 6 s i n θ
Note that
s i n 5 θ = s i n ( 1 1 θ + 5 θ ) = − s i n 5 θ = + s i n 5 θ × c o s 5 θ 3 2 s i n θ
= s i n 1 0 θ 3 2 s i n θ
= s i n ( 1 1 θ − θ ) 3 2 s i n θ
= s i n θ 3 2 s i n θ
= 3 2
Problem Loading...
Note Loading...
Set Loading...
let
k = cos θ × cos 2 θ × cos 3 θ × cos 4 θ × cos 5 θ
multiplying both side by
2 5 × sin θ × sin 2 θ × sin 3 θ × sin 4 θ × sin 5 θ
We have
2 5 × k × sin θ × sin 2 θ × sin 3 θ × sin 4 θ × sin 5 θ = sin 2 θ × sin 4 θ × sin 6 θ × sin 8 θ × sin 1 0 θ
RHS can be written as
= sin 2 θ × sin 4 θ × sin ( 1 1 θ − 5 θ ) × sin ( 1 1 θ − 3 θ ) × sin ( 1 1 θ − θ )
putting θ = 1 1 π
= sin θ × sin 2 θ × sin 3 θ × sin 4 θ × sin 5 θ
thus
2 5 × k × sin θ × sin 2 θ × sin 3 θ × sin 4 θ × sin 5 θ = sin θ × sin 2 θ × sin 3 θ × sin 4 θ × sin 5 θ
k = 3 2 1