Multiple angles

Geometry Level 4

Let θ = π 11 \theta = \dfrac \pi{11} . Find

sec ( θ ) sec ( 2 θ ) sec ( 3 θ ) sec ( 4 θ ) sec ( 5 θ ) \large \sec (\theta) \sec (2\theta) \sec (3\theta) \sec (4\theta) \sec (5\theta)


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Abhijit Dixit
Feb 26, 2017

let

k = cos θ × cos 2 θ × cos 3 θ × cos 4 θ × cos 5 θ k=\cos\theta\times\cos2\theta\times\cos3\theta\times\cos4\theta\times\cos5\theta

multiplying both side by

2 5 × sin θ × sin 2 θ × sin 3 θ × sin 4 θ × sin 5 θ 2^5\times\sin\theta\times\sin2\theta\times\sin3\theta\times\sin4\theta\times\sin5\theta

We have

2 5 × k × sin θ × sin 2 θ × sin 3 θ × sin 4 θ × sin 5 θ = sin 2 θ × sin 4 θ × sin 6 θ × sin 8 θ × sin 10 θ 2^5\times k\times\sin\theta\times\sin2\theta\times\sin3\theta\times\sin4\theta\times\sin5\theta = \sin2\theta\times\sin4\theta\times\sin6\theta\times\sin8\theta\times\sin10\theta

RHS can be written as

= sin 2 θ × sin 4 θ × sin ( 11 θ 5 θ ) × sin ( 11 θ 3 θ ) × sin ( 11 θ θ ) = \sin2\theta\times\sin4\theta\times\sin(11\theta-5\theta)\times\sin(11\theta-3\theta)\times\sin(11\theta -\theta)

putting θ = π 11 \theta=\frac{\pi}{11}

= sin θ × sin 2 θ × sin 3 θ × sin 4 θ × sin 5 θ = \sin\theta\times\sin2\theta\times\sin3\theta\times\sin4\theta\times\sin5\theta

thus

2 5 × k × sin θ × sin 2 θ × sin 3 θ × sin 4 θ × sin 5 θ = sin θ × sin 2 θ × sin 3 θ × sin 4 θ × sin 5 θ 2^5\times k\times\sin\theta\times\sin2\theta\times\sin3\theta\times\sin4\theta\times\sin5\theta = \sin\theta\times\sin2\theta\times\sin3\theta\times\sin4\theta\times\sin5\theta

k = 1 32 k=\frac{1}{32}

Chew-Seong Cheong
Feb 27, 2017

P = sec π 11 sec 2 π 11 sec 3 π 11 sec 4 π 11 sec 5 π 11 = 1 cos π 11 cos 2 π 11 cos 3 π 11 cos 4 π 11 cos 5 π 11 Note that cos ( π x ) = cos x = 1 cos π 11 cos 2 π 11 cos 4 π 11 1 cos 3 π 11 cos 6 π 11 = sin π 11 sin π 11 cos π 11 cos 2 π 11 cos 4 π 11 sin 3 π 11 sin 3 π 11 cos 3 π 11 cos 6 π 11 = 2 sin π 11 sin 2 π 11 cos 2 π 11 cos 4 π 11 2 sin 3 π 11 sin 6 π 11 cos 6 π 11 = 4 sin π 11 sin 4 π 11 cos 4 π 11 4 sin 3 π 11 sin 12 π 11 = 8 sin π 11 sin 8 π 11 4 sin 3 π 11 sin 12 π 11 Note that sin ( π x ) = sin x = 8 sin π 11 sin 3 π 11 4 sin 3 π 11 sin π 11 Note that sin ( π + x ) = sin x = 32 \begin{aligned} P & = \sec \frac \pi{11} \sec \frac {2 \pi}{11} \sec \frac {3 \pi}{11} \sec \frac {4 \pi}{11} \sec \frac {5 \pi}{11} \\ & = \frac 1{\cos \frac \pi{11} \cos \frac {2 \pi}{11} \cos \frac {3 \pi}{11} \cos \frac {4 \pi}{11} \color{#3D99F6}\cos \frac {5 \pi}{11}} & \small \color{#3D99F6} \text{Note that }\cos (\pi - x) = - \cos x \\ & = \frac 1{\cos \frac \pi{11} \cos \frac {2 \pi}{11}\cos \frac {4 \pi}{11}} \cdot \frac{-1} {\cos \frac {3\pi}{11} \color{#3D99F6}\cos \frac {6 \pi}{11}} \\ & = \frac {\color{#3D99F6}\sin \frac \pi{11}}{{\color{#3D99F6}\sin \frac \pi{11}}\cos \frac \pi{11} \cos \frac {2 \pi}{11} \cos \frac {4 \pi}{11}} \cdot \frac {- \color{#D61F06}\sin \frac {3 \pi}{11}}{{\color{#D61F06}\sin \frac {3\pi}{11}}\cos \frac {3\pi}{11} \cos \frac {6 \pi}{11}} \\ & = \frac {2\sin \frac \pi{11}}{\sin \frac {2\pi}{11} \cos \frac {2 \pi}{11} \cos \frac {4 \pi}{11}} \cdot \frac {- 2\sin \frac {3 \pi}{11}}{\sin \frac {6\pi}{11} \cos \frac {6 \pi}{11}} \\ & = \frac {4\sin \frac \pi{11}}{\sin \frac {4\pi}{11} \cos \frac {4 \pi}{11}} \cdot \frac {- 4\sin \frac {3 \pi}{11}}{\sin \frac {12 \pi}{11}} \\ & = \frac {8\sin \frac \pi{11}}{\color{#3D99F6}\sin \frac {8\pi}{11}} \cdot \frac {- 4\sin \frac {3 \pi}{11}}{\color{#D61F06}\sin \frac {12 \pi}{11}} & \small \color{#3D99F6} \text{Note that }\sin (\pi - x) = \sin x \\ & = \frac {8\sin \frac \pi{11}}{\color{#3D99F6}\sin \frac {3\pi}{11}} \cdot \frac {- 4\sin \frac {3 \pi}{11}}{\color{#D61F06}- \sin \frac \pi{11}} & \small \color{#D61F06} \text{Note that }\sin (\pi + x) = - \sin x \\ & = \boxed{32} \end{aligned}

W e h a v e i d e n t i t y Π k = 1 n 1 C o s ( k π n ) = S i n ( n π 2 ) 2 n 1 . L e t n = 11. Π k = 1 11 C o s ( k π 11 ) = Π k = 1 10 C o s ( k π 11 ) C o s ( 11 π 11 ) = S i n ( 11 π 2 ) 2 10 C o s ( 11 π 11 ) = S i n ( π 2 ) 2 10 ( 1 ) N o t e t h a t C o s ( π α ) = C o s α . C o s ( k π 11 ) = C o s ( π k π 11 ) Π k = 1 5 C o s ( k π 11 ) = S i n ( 11 π 2 ) 2 10 ( 1 ) = S i n ( 1 2 π ) 2 10 = 1 2 5 . given expression= reciprocal of the above = 32. \Large~\displaystyle We~ have~identity~~{\Huge\Pi}_{k=1}^{n-1} Cos(\frac{k\pi} n) = \dfrac{Sin(\frac{n\pi} 2)}{2^{n-1}}.\\ Let~n=11.~~\therefore~ {\Huge\Pi}_{k=1}^{11}Cos(\frac{k\pi} {11})= {\Huge\Pi}_{k=1}^{10} Cos(\frac{k\pi} {11})* Cos(\frac{11\pi} {11}) \\ = \dfrac{Sin(\frac{11\pi} 2)}{2^{10}}* Cos(\frac{11\pi} {11}) = \dfrac{Sin(\frac{\pi} 2)}{2^{10}}*(-1)\\ Note~that~Cos(\pi- \alpha)= - Cos\alpha.~\implies~ Cos(\frac{k\pi}{11}) =- Cos(\pi -\frac{k\pi} {11})\\ \therefore~ {\Huge\Pi}_{k=1}^5* Cos(\frac{k\pi} {11})=\sqrt{ - \dfrac{Sin(\frac{11\pi} 2)}{2^{10}}*(-1)} \\ \ \ \ \ =\sqrt{\dfrac{Sin(\frac 1 2 *\pi)}{2^{10}}}=\dfrac 1 {2^5}.\\ \therefore~\text{given expression= reciprocal of the above =} \Large \color{#D61F06}{32}.

Naren Bhandari
Feb 27, 2017

S = s e c θ × s e c 2 θ × s e c 3 θ × s e c 4 θ × s e c 5 θ S = sec\theta\times sec2\theta\times sec3\theta \times sec4\theta\times sec5\theta

= 1 c o s θ × c o s 2 θ t i m e s c o s 3 θ × c o s 4 θ × c o s 5 θ =\frac{1}{cos\theta\times cos2\theta\ times cos3\theta \times cos4\theta\times cos5\theta}

Multiplying numerator and denominator by 2 s i n θ 2sin\theta

= 2 s i n θ ( 2 s i n θ c o s θ ) × c o s 2 θ × c o s 3 θ × c o s 4 θ × c o s 5 θ =\frac{2sin\theta}{ (2sin\theta cos\theta)\times cos2\theta\times cos3\theta \times cos4\theta\times cos5\theta}

= 2 s i n θ s i n 2 θ × c o s 2 θ t i m e s c o s 3 θ × c o s 4 θ × c o s 5 θ =\frac{2sin\theta}{sin2\theta\times cos2\theta\ times cos3\theta \times cos4\theta\times cos5\theta}

= 4 s i n θ ( 2 s i n 2 θ × c o s 2 θ ) t i m e s c o s 3 θ × c o s 4 θ × c o s 5 θ =\frac{4sin\theta}{(2sin2\theta\times cos2\theta)\ times cos3\theta \times cos4\theta\times cos5\theta}

= 8 s i n θ ( 2 s i n 4 θ × c o s 4 θ ) t i m e s c o s 3 θ × c o s 5 θ =\frac{8sin\theta}{(2sin4\theta\times cos4\theta)\ times cos3\theta\times cos5\theta}

Note that

c o s 3 θ = c o s ( 11 θ 3 θ ) = c o s ( π 3 θ ) = c o s 8 θ cos3\theta = cos(11\theta - 3\theta) = cos(\pi - 3\theta) = - cos8\theta

= 8 s i n θ ( 2 s i n 8 θ t i m e s ( c o s 8 θ ) × c o s 5 θ =\frac{8sin\theta}{(2sin8\theta\ times (- cos8\theta)\times cos5\theta}

= 16 s i n θ ( 2 s i n 8 θ t i m e s c o s 8 θ ) × c o s 5 θ =\frac{16sin\theta}{(-2sin8\theta\ times cos8\theta)\times cos5\theta} = 16 s i n θ s i n 16 θ × c o s 5 θ =\frac{16sin\theta}{-sin16\theta\times cos5\theta}

Note that

s i n 5 θ = s i n ( 11 θ + 5 θ ) = s i n 5 θ sin5\theta = sin(11\theta + 5\theta )= - sin5\theta = 32 s i n θ + s i n 5 θ × c o s 5 θ =\frac{32sin\theta}{+sin5\theta\times cos5\theta}

= 32 s i n θ s i n 10 θ =\frac{32sin\theta}{sin10\theta}

= 32 s i n θ s i n ( 11 θ θ ) =\frac{32sin\theta}{sin(11\theta- \theta )}

= 32 s i n θ s i n θ =\frac{32sin\theta}{sin\theta}

= 32 = \boxed{32}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...