Multiple Integrals

Calculus Level 5

V x 2 y 2 z 2 ( x + y + z ) 9 ln 2 ( 1 x y z ) d x d y d z \large \displaystyle \iiint_{V} \dfrac{x^2 y^2 z^2}{(x+y+z)^9}\ln^2 (1-x-y-z) \, dx \; dy \; dz

Evaluate the triple integral above where V : { x , y , z x , y , z > 0 , x + y + z 1 } V: \{x,y,z\; | \; x,y,z>0,x+y+z\le 1 \} .

If this integral can be expressed as ζ ( P ) Q \dfrac{\zeta( P)}Q , where P P and Q Q are positive integers, submit your answer as Q P \dfrac QP .

Notation : ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 840.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Sep 13, 2016

Changing variables to u = x u = x , v = x + y v = x+y , w = x + y + z w = x+y+z , the integral becomes I = 0 1 d w 0 w d v 0 v d u u 2 ( v u ) 2 ( w v ) 2 ln 2 ( 1 w ) w 9 = ( 0 1 u 2 ( 1 u ) 2 d u ) 0 1 d w 0 w d v v 5 ( w v ) 2 ln 2 ( 1 w ) w 9 = B ( 3 , 3 ) ( 0 1 v 5 ( 1 v ) 2 d v ) 0 1 w 8 ln 2 ( 1 w ) w 9 d w = B ( 3 , 3 ) B ( 6 , 3 ) 0 1 ln 2 w 1 w d w = 1 7 ! n = 0 0 1 w n ln 2 w d w = 2 7 ! n = 0 1 ( n + 1 ) 3 = ζ ( 3 ) 2520 \begin{array}{rcl} \displaystyle I & = & \displaystyle \int_0^1dw \int_0^w dv \int_0^v du \frac{u^2(v-u)^2(w-v)^2 \ln^2(1-w)}{w^9} \\ & = & \displaystyle \left(\int_0^1 u^2(1-u)^2\,du\right)\int_0^1dw \int_0^w dv \frac{v^5(w-v)^2 \ln^2(1-w)}{w^9} \\ & = & \displaystyle B(3,3)\left(\int_0^1 v^5(1-v)^2\,dv\right) \int_0^1 \frac{w^8\ln^2(1-w)}{w^9}\,dw \\ & = & \displaystyle B(3,3)B(6,3) \int_0^1 \frac{\ln^2w}{1-w}\,dw \\ & = & \displaystyle \frac{1}{7!}\sum_{n=0}^\infty \int_0^1 w^n \ln^2w\,dw \; = \; \frac{2}{7!}\sum_{n=0}^\infty \frac{1}{(n+1)^3} \; = \; \frac{\zeta(3)}{2520} \end{array} making the answer 2520 3 = 840 \frac{2520}{3} = \boxed{840} . This method is, of course, essentially the proof of the result Aditya quotes.

The fact lies in the famous Drichlet's theorem and Liouville's extension of the theorem that is,

V f ( x + y + z ) x a 1 y b 1 z c 1 d x d y d z = Γ ( a ) Γ ( b ) Γ ( c ) Γ ( a + b + c ) R 1 R 2 f ( u ) u a + b + c 1 d u \displaystyle \int \int \int_{V}^{} f(x+y+z)x^{a-1}y^{b-1}z^{c-1} dx dy dz = \frac{\Gamma(a)\Gamma(b)\Gamma(c)}{\Gamma(a+b+c)}\int_{R_1}^{R_2} f(u) u^{a+b+c-1} du where R 1 < x , y , z < R 2 R_1<x,y,z<R_2 extend over all positive values.

Applying the theorem yields if I I is our desired integral, I = Γ 3 ( 3 ) Γ ( 9 ) 0 1 ln 2 ( 1 u ) u d u \displaystyle I = \frac{\Gamma^3 (3)}{\Gamma(9)} \int_{0}^{1} \frac{\ln^2 (1-u)}{u}du

the latter integral is 0 1 ln 2 x 1 x d x = n = 0 0 1 x n ln 2 x d x = n = 0 2 ( n + 1 ) 3 = 2 ζ ( 3 ) \displaystyle \int_{0}^{1}\frac{\ln^2 x}{1-x}dx = \sum_{n=0}^{\infty}\int_{0}^{1} x^n\ln^2 x dx =\sum_{n=0}^{\infty} \frac{2}{(n+1)^3} = 2\zeta(3)

So our integral is I = ζ ( 3 ) 2520 \displaystyle I=\frac{\zeta(3)}{2520} which makes Q P = 840 \displaystyle \frac{Q}{P} = 840

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...