∭ V ( x + y + z ) 9 x 2 y 2 z 2 ln 2 ( 1 − x − y − z ) d x d y d z
Evaluate the triple integral above where V : { x , y , z ∣ x , y , z > 0 , x + y + z ≤ 1 } .
If this integral can be expressed as Q ζ ( P ) , where P and Q are positive integers, submit your answer as P Q .
Notation : ζ ( ⋅ ) denotes the Riemann zeta function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The fact lies in the famous Drichlet's theorem and Liouville's extension of the theorem that is,
∫ ∫ ∫ V f ( x + y + z ) x a − 1 y b − 1 z c − 1 d x d y d z = Γ ( a + b + c ) Γ ( a ) Γ ( b ) Γ ( c ) ∫ R 1 R 2 f ( u ) u a + b + c − 1 d u where R 1 < x , y , z < R 2 extend over all positive values.
Applying the theorem yields if I is our desired integral, I = Γ ( 9 ) Γ 3 ( 3 ) ∫ 0 1 u ln 2 ( 1 − u ) d u
the latter integral is ∫ 0 1 1 − x ln 2 x d x = n = 0 ∑ ∞ ∫ 0 1 x n ln 2 x d x = n = 0 ∑ ∞ ( n + 1 ) 3 2 = 2 ζ ( 3 )
So our integral is I = 2 5 2 0 ζ ( 3 ) which makes P Q = 8 4 0
Problem Loading...
Note Loading...
Set Loading...
Changing variables to u = x , v = x + y , w = x + y + z , the integral becomes I = = = = = ∫ 0 1 d w ∫ 0 w d v ∫ 0 v d u w 9 u 2 ( v − u ) 2 ( w − v ) 2 ln 2 ( 1 − w ) ( ∫ 0 1 u 2 ( 1 − u ) 2 d u ) ∫ 0 1 d w ∫ 0 w d v w 9 v 5 ( w − v ) 2 ln 2 ( 1 − w ) B ( 3 , 3 ) ( ∫ 0 1 v 5 ( 1 − v ) 2 d v ) ∫ 0 1 w 9 w 8 ln 2 ( 1 − w ) d w B ( 3 , 3 ) B ( 6 , 3 ) ∫ 0 1 1 − w ln 2 w d w 7 ! 1 n = 0 ∑ ∞ ∫ 0 1 w n ln 2 w d w = 7 ! 2 n = 0 ∑ ∞ ( n + 1 ) 3 1 = 2 5 2 0 ζ ( 3 ) making the answer 3 2 5 2 0 = 8 4 0 . This method is, of course, essentially the proof of the result Aditya quotes.