Multiplex! for JEE

Calculus Level 5

Find the value of lim x 0 ( 0 1 ( b y + a ( 1 y ) ) x . d y ) 1 x \displaystyle \lim_{x\to 0}\left(\int_{0} ^{1}(by+a(1-y))^{x}.dy\right)^{\frac{1}{x}} where b > a b>a .

1 e . ( b b a a ) 1 b a \frac{1}{e}.(\frac{b^{b}}{a^{a}})^{\frac{1}{b-a}} 1 e . ( a b b a ) a b a \frac{1}{e}.(\frac{a^{b}}{b^{a}})^{\frac{a}{b-a}} e . ( b a a b ) 1 b a e.(\frac{b^{a}}{a^{b}})^{\frac{1}{b-a}} 1 e . ( a a b b ) 1 b a \frac{1}{e}.(\frac{a^{a}}{b^{b}})^{\frac{1}{b-a}} 1 e . ( a b b a ) a b b a \frac{1}{e}.(\frac{a^{b}}{b^{a}})^{\frac{ab}{b-a}} None 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Dhruva Patil
Feb 5, 2015

L = lim x 0 ( 0 1 ( b y + a ( 1 y ) ) x . d y ) 1 x I = 0 1 ( b y + a ( 1 y ) ) x . d y L e t b y + a ( 1 y ) = t , ( b a ) d y = d t ( n e e d n o t c o m p u t e t h e b o u n d s ) I = t x ( b a ) d t = t x + 1 ( x + 1 ) ( b a ) I = [ ( b y + a ( 1 y ) ) x + 1 ( x + 1 ) ( b a ) ] c o m p u t e d a t y = 1 a n d y = 0 I = b x + 1 a x + 1 ( x + 1 ) ( b a ) L = lim x 0 ( b x + 1 a x + 1 ( x + 1 ) ( b a ) ) 1 x I n ( L ) = lim x 0 I n ( b x + 1 a x + 1 ( x + 1 ) ( b a ) ) x A s x a p p r o a c h e s 0 , d e n o m i n a t o r a n d n u m e r a t o r a p p r o a c h 0. H e n c e , w e c a n u s e L h o p i t a l s r u l e . I n ( L ) = lim x 0 ( b x + 1 I n ( b ) a x + 1 I n ( a ) ( x + 1 ) ( b a ) 1 ( x + 1 ) ) I n ( L ) = 1 ( b a ) I n b b a a 1 L = 1 e ( b b a a ) 1 ( b a ) L=\displaystyle \lim _{ x\to 0 } \left( \int _{ 0 }^{ 1 } (by+a(1-y))^{ x }.dy \right) ^{ \frac { 1 }{ x } }\\ I=\displaystyle \int _{ 0 }^{ 1 } (by+a(1-y))^{ x }.dy\\ Let\quad by+a(1-y)=t\quad ,\quad (b-a)dy=dt\\ (need\quad not\quad compute\quad the\quad bounds)\\ I=\displaystyle \int { \frac { { t }^{ x } }{ (b-a) } } dt\quad =\quad \frac { { t }^{ x+1 } }{ (x+1)(b-a) } \\ I=\displaystyle \left[ \frac { ({ by+a(1-y)) }^{ x+1 } }{ (x+1)(b-a) } \right] \quad computed\quad at\quad y=1\quad and\quad y=0\\ I=\displaystyle \frac { { b }^{ x+1 }-{ a }^{ x+1 } }{ (x+1)(b-a) } \\ L=\displaystyle \lim _{ x\to 0 } \left( \frac { { b }^{ x+1 }-{ a }^{ x+1 } }{ (x+1)(b-a) } \right) ^{ \frac { 1 }{ x } }\\ \displaystyle In(L)=\lim _{ x\to 0 } \frac { In\left( \frac { { b }^{ x+1 }-{ a }^{ x+1 } }{ (x+1)(b-a) } \right) }{ x } \\ As\quad x\quad approaches\quad 0, denominator\quad and\quad numerator\quad approach\quad 0.\\ Hence,\quad we\quad can\quad use\quad L'hopital's\quad rule.\\ In(L)=\displaystyle \lim _{ x\to 0 } \left( \frac { { b }^{ x+1 }In(b)-{ a }^{ x+1 }In(a) }{ (x+1)(b-a) } -\frac { 1 }{ (x+1) } \right) \\ In(L)=\displaystyle \frac { 1 }{ (b-a) } In\frac { { b }^{ b } }{ { a }^{ a } } -1\\ L=\boxed { \boxed {\displaystyle \frac { 1 }{ e } { \left( \frac { { b }^{ b } }{ { a }^{ a } } \right) }^{ \frac { 1 }{ (b-a) } } } }

This took me quite some time.. Can we do it in a shorter way?

Chirag Trasikar - 6 years, 4 months ago

Log in to reply

That is what I was wondering. Although, with practice, some of the steps above can be done in your head without a lot of effort or time. And a couple of tricks can be used to make, say, differentiating the numerator (the log term) shorter by expanding it, i.e, separating the one log term to the difference of two log terms and then differentiating it.

Dhruva Patil - 6 years, 4 months ago

maybe take x + 1 x+1 as a new variable t t which tends to 1 1 . Also, since it's a multiple choice question, putting b = 2 , a = 1 b=2,a=1 will give the correct answer. But although it takes lesser time than the above solution, I don't recommend it.

Raghav Vaidyanathan - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...