Multiply the tan

Geometry Level 2

tan ( 1 ) tan ( 2 ) tan ( 3 ) tan ( 4 ) tan ( 8 6 ) tan ( 8 7 ) tan ( 8 8 ) tan ( 8 9 ) = ? \tan(1^\circ)\tan(2^\circ)\tan(3^\circ)\tan(4^\circ)\ldots\tan(86^\circ)\tan(87^\circ)\tan(88^\circ)\tan(89^\circ)=?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jan 16, 2020

P = tan ( 1 ) tan ( 2 ) tan ( 3 ) tan ( 4 ) tan ( 8 6 ) tan ( 8 7 ) tan ( 8 8 ) tan ( 8 9 ) = tan ( 1 ) cot ( 1 ) tan ( 2 ) cot ( 2 ) tan ( 3 ) cot ( 3 ) tan ( 4 4 ) cot ( 4 4 ) tan ( 4 5 ) = 1 × 1 × 1 × 1 × 1 = 1 \begin{aligned} P & = \tan(1^\circ)\tan(2^\circ)\tan(3^\circ)\tan(4^\circ) \cdots \tan(86^\circ)\tan(87^\circ)\tan(88^\circ)\tan(89^\circ) \\ & = \tan(1^\circ)\cot(1^\circ)\tan(2^\circ)\cot(2^\circ)\tan(3^\circ)\cot(3^\circ)\cdots\tan(44^\circ)\cot(44^\circ) \tan(45^\circ) \\ & = 1 \times 1 \times 1 \times \cdots 1 \times 1 = \boxed 1 \end{aligned}

Joshua Lowrance
Jan 15, 2020

tan ( 1 ) tan ( 2 ) tan ( 3 ) tan ( 43 ) tan ( 44 ) tan ( 45 ) tan ( 46 ) tan ( 47 ) tan ( 87 ) tan ( 88 ) tan ( 89 ) \tan{(1)}\tan{(2)}\tan{(3)}\cdots\tan{(43)}\tan{(44)}\tan{(45)}\tan{(46)}\tan{(47)}\cdots\tan{(87)}\tan{(88)}\tan{(89)}

Using property: tan ( A ) = cot ( 90 A ) \tan{(A)}=\cot{(90-A)}

cot ( 89 ) cot ( 88 ) cot ( 87 ) cot ( 47 ) cot ( 46 ) tan ( 45 ) tan ( 46 ) tan ( 47 ) tan ( 87 ) tan ( 88 ) tan ( 89 ) \cot{(89)}\cot{(88)}\cot{(87)}\cdots\cot{(47)}\cot{(46)}\tan{(45)}\tan{(46)}\tan{(47)}\cdots\tan{(87)}\tan{(88)}\tan{(89)}

Rearranging:

( cot ( 89 ) tan ( 89 ) ) ( cot ( 88 ) tan ( 88 ) ) ( cot ( 87 ) tan ( 87 ) ) ( cot ( 47 ) tan ( 47 ) ) ( cot ( 46 ) tan ( 46 ) ) tan ( 45 ) (\cot{(89)}\tan{(89)})(\cot{(88)}\tan{(88)})(\cot{(87)}\tan{(87)})\cdots(\cot{(47)}\tan{(47)})(\cot{(46)}\tan{(46)})\tan{(45)}

Using property: cot ( A ) = 1 tan ( A ) \cot{(A)}=\frac{1}{\tan{(A)}}

1 × 1 × 1 × × 1 × 1 × tan ( 45 ) = tan ( 45 ) = 1 1\times1\times1\times\cdots\times1\times1\times\tan{(45)}=\tan{(45)}=\boxed{1}

Mahdi Raza
Jul 13, 2020

P = tan ( 1 ) × tan ( 2 ) tan ( 4 4 ) × tan ( 4 5 ) × tan ( 4 6 ) tan ( 8 8 ) × tan ( 8 9 ) = tan ( 1 ) × tan ( 2 ) tan ( 4 4 ) × tan ( 4 5 ) × cot ( 4 4 ) cot ( 2 ) × cot ( 1 ) = tan ( 1 ) × cot ( 1 ) × tan ( 2 ) × cot ( 2 ) × tan ( 3 ) × cot ( 3 ) × tan ( 4 4 ) × cot ( 4 4 ) × tan ( 4 5 ) = 1 × 1 × 1 × 1 P = 1 \begin{aligned} P &= {\color{#EC7300}{\tan(1^\circ) \times \tan(2^\circ) \ldots \tan(44^\circ)}}\times \blue{\tan(45^\circ)} \times {\color{#69047E}{\tan(46^\circ) \ldots \tan(88^\circ) \times \tan(89^\circ)}} \\ \\ &= {\color{#EC7300}{\tan(1^\circ) \times \tan(2^\circ) \ldots \tan(44^\circ)}}\times \blue{\tan(45^\circ)} \times {\color{#69047E}{\cot(44^\circ) \ldots \cot(2^\circ) \times \cot(1^\circ)}} \\ \\ &= {\color{#EC7300}{\tan(1^\circ)}} \times {\color{#69047E}{\cot(1^\circ)}} \times {\color{#EC7300}{\tan(2^\circ)}} \times {\color{#69047E}{\cot(2^\circ)}} \times {\color{#EC7300}{\tan(3^\circ)}} \times {\color{#69047E}{\cot(3^\circ)}} \ldots \times {\color{#EC7300}{\tan(44^\circ)}} \times {\color{#69047E}{\cot(44^\circ)}} \times \blue{\tan(45^\circ)} \\ \\ &= 1 \times 1 \times 1 \times \ldots \blue{1} \\ \\ P &= \boxed{1} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...