Multiplying Logarithms

Algebra Level 2

What is the value of ( log 35 7 ) 2 + log 35 5 log 35 245 (\log_{35}{7})^2+\log_{35}{5}\cdot\log_{35}{245} ?

1 35 \frac{1}{35} 7 5 \frac{7}{5} 0 1 5 7 \frac{5}{7}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Julian Yu
Apr 19, 2018

Using the base-change formula, the expression becomes ( log 7 ) 2 ( log 35 ) 2 + log 5 log 35 log 245 log 35 \frac{(\log 7)^2}{(\log 35)^2}+\frac{\log 5}{\log 35}\cdot\frac{\log 245}{\log 35} .

Combining denominators and simplifying log 245 \log 245 , we get ( log 7 ) 2 + ( log 5 ) ( log 5 + 2 log 7 ) ( log 35 ) 2 \frac{(\log 7)^2+(\log 5)(\log5+2\log7)}{(\log 35)^2} .

= ( log 7 ) 2 + 2 log 7 log 5 + ( log 5 ) 2 ( log 35 ) 2 =\frac{(\log7)^2+2\log7\log5+(\log5)^2}{(\log35)^2} .

= ( log 7 + log 5 ) 2 ( log 35 ) 2 = ( log 35 ) 2 ( log 35 ) 2 = 1 =\frac{(\log7+\log5)^2}{(\log35)^2}=\frac{(\log35)^2}{(\log35)^2}=1 .

재환 하
Apr 20, 2018

245=5×7^2

log 35 7 = a , log 35 5 = b \log_{35}7=a, \log_{35}5=b

a 2 + b ( 2 a + b ) = a 2 + 2 a b + b 2 = ( a + b ) 2 a^2+b(2a+b)=a^2+2ab+b^2=(a+b)^2

( log 35 7 + log 35 5 ) 2 = 1 2 = 1 (\log_{35}7+ \log_{35}5)^2=1^2=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...