Must find tan 5

Geometry Level 3

Evaluate

i = 1 5 [ 3 + tan ( 5 i ) ] . \prod_{i=1}^5 [ \sqrt{3} + \tan (5i^\circ ) ].


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

i = 1 5 [ 3 + tan ( 5 i ) ] = i = 1 5 3 cos ( 5 i ) + sin ( 5 i ) cos ( 5 i ) \displaystyle \prod_{i=1}^{5} [\sqrt{3}+ \tan (5i)^{\circ}] = \displaystyle \prod_{i=1}^{5} \frac{\sqrt{3} \cos (5i)^{\circ} + \sin (5i)^{\circ}}{\cos (5i)^{\circ}}

= i = 1 5 [ 2 3 2 cos ( 5 i ) + 1 2 sin ( 5 i ) cos ( 5 i ) ] = i = 1 5 [ 2 sin ( 60 + 5 i ) cos ( 5 i ) ] = \displaystyle \prod_{i=1}^{5} [2 \frac{\frac{\sqrt{3}}{2} \cos (5i)^{\circ} + \frac{1}{2} \sin (5i)^{\circ}}{\cos (5i)^{\circ}}] = \displaystyle \prod_{i=1}^{5} [2 \frac{\sin (60 + 5i)^{\circ}}{\cos (5i)^{\circ}}]

= 2 5 sin 6 5 cos 5 sin 7 0 cos 1 0 sin 7 5 cos 1 5 sin 8 0 cos 2 0 sin 8 5 cos 2 5 = 32 = 2^5 * \frac{\sin 65^{\circ}}{\cos 5^{\circ}} \frac{\sin 70^{\circ}}{\cos 10^{\circ}} \frac{\sin 75^{\circ}}{\cos 15^{\circ}} \frac{\sin 80^{\circ}}{\cos 20^{\circ}} \frac{\sin 85^{\circ}}{\cos 25^{\circ}} = 32 .

All other terms cancel as sin x = cos ( 90 x ) \sin x^{\circ} = \cos (90 - x)^{\circ} .

Nice one! Thanks! :)

Pranav Arora - 7 years, 8 months ago

wonderful observation. wish i could see solutions like that...

Jonathan Wong - 7 years, 8 months ago

Thanks everyone. @Jonathan, sometimes unconsciously,you get wonderful solutions.

A Brilliant Member - 7 years, 8 months ago

elegant

Vicky Bro - 7 years, 8 months ago

Darn! I reached till the final step...just didn't think of expanding the product! Too good :D

Parth Thakkar - 7 years, 8 months ago

Oh dear......I had thought of combining but never did realize that terms will cancel.....Nice solution

Nishant Sharma - 7 years, 8 months ago

I didn't get the step from" √3/2 cos(5i°)...." to "sin(60+5i°)...".

Francesco Pozzetti - 7 years, 8 months ago

Log in to reply

sine addition formula on sin(60+5i°)

Jonathan Wong - 7 years, 8 months ago
Aaron Doman
Oct 6, 2013

Note that for any angle θ \theta , tan θ + tan ( 3 0 θ ) 1 tan θ tan ( 3 0 θ ) = tan ( θ + 3 0 θ ) = 3 3 \frac{\tan\theta+\tan(30^\circ-\theta)}{1-\tan\theta\tan(30^\circ-\theta)}=\tan(\theta+30^\circ-\theta)=\frac{\sqrt3}{3} 3 [ tan θ + tan ( 3 0 θ ) ] = 1 tan θ tan ( 3 0 θ ) . \sqrt3[\tan\theta+\tan(30^\circ-\theta)]=1-\tan\theta\tan(30^\circ-\theta). Therefore, [ 3 + tan θ ] [ 3 + tan ( 3 0 θ ) ] [\sqrt3+\tan\theta][\sqrt3+\tan(30^\circ-\theta)] = 3 + 3 [ tan θ + tan ( 3 0 θ ) ] + tan θ tan ( 3 0 θ ) =3+\sqrt3[\tan\theta+\tan(30^\circ-\theta)]+\tan\theta\tan(30^\circ-\theta) = 3 + 1 =3+1 = 4. =4. We can pair up the 5 5^\circ term with the 2 5 25^\circ term and the 1 0 10^\circ term with the 2 0 20^\circ term, leaving the 1 5 15^\circ term. But from the tangent half-angle formula or tangent angle difference formula, we have tan 1 5 = 2 3 \tan15^\circ=2-\sqrt3 . Thus, the product is equal to 4 2 2 = 32 4^2\cdot2=\boxed{32} .

i did the same way :D

Opel Berlin - 7 years, 8 months ago
C Lim
Oct 6, 2013

If A + B = 3 0 A + B = 30^\circ , then we have:

tan ( A + B ) = 1 3 tan A + tan B = 1 3 ( 1 tan A tan B ) . \tan(A+B) = \frac 1 {\sqrt 3} \implies \tan A + \tan B = \frac 1 {\sqrt 3}(1 - \tan A \tan B).

This gives us:

( 3 + tan A ) ( 3 + tan B ) = 3 + 3 ( tan A + tan B ) + tan A tan B = 4. (\sqrt 3 + \tan A)(\sqrt 3 + \tan B) = 3 + \sqrt 3(\tan A + \tan B) + \tan A \tan B = 4.

Now denoting the product in the question by A A , we have:

A 2 = i = 1 5 ( 3 + tan ( 5 i ) ) j = 1 5 ( 3 + tan ( 5 j ) ) = i = 1 5 ( 3 + tan ( 5 i ) ) ( 3 + tan ( 5 ( 6 i ) ) ) = 4 5 . \begin{aligned}A^2 &= \prod_{i=1}^5 (\sqrt 3 + \tan(5i)^\circ) \prod_{j=1}^5(\sqrt 3 + \tan(5j)^\circ) \\ &= \prod_{i=1}^5 (\sqrt 3 + \tan(5i)^\circ) (\sqrt 3 + \tan(5(6-i))^\circ) \\ &= 4^5. \end{aligned}

since 5 i + 5 ( 6 i ) = 30 5i + 5(6-i) = 30 . This gives A = 2 5 = 32 A = 2^5 = 32 .

Jatin Yadav
Oct 8, 2013

( 3 + t a n θ ) ( 3 + t a n ( 3 0 θ ) ) (\sqrt{3} + tan\theta)(\sqrt{3} + tan(30^{\circ} - \theta))

= ( 3 + t a n θ ) ( 3 + 1 3 t a n θ 1 + 1 3 t a n θ ) (\sqrt{3} +tan\theta)( \sqrt{3} + \frac{\frac{1}{\sqrt{3}} - tan\theta}{1 + \frac{1}{\sqrt{3}}tan\theta})

= ( 3 + t a n θ ) ( 4 3 + t a n θ ) = 4 (\sqrt{3} + tan\theta)(\frac{4}{\sqrt{3} + tan\theta }) = 4

Now, i = 1 5 [ 3 + t a n ( 5 i ) ] \displaystyle \prod_{i = 1}^{5}[\sqrt{3} + tan(5i^{\circ}) ]

= 4 × 4 × ( 3 + t a n ( 1 5 ) ) 4 \times 4 \times (\sqrt{3} + tan(15^{\circ})) (try to replace θ = 5 \theta = 5^{\circ} and 1 0 10^{\circ} )

= 4 × 4 × 2 = 32 4 \times \ 4 \times 2 = \fbox{32}

Pranav Arora
Oct 7, 2013

The expression to be evaluated is: ( 3 + tan ( 5 ) ) ( 3 + tan ( 10 ) ) ( 3 + tan ( 15 ) ) ( 3 + tan ( 20 ) ) ( 3 + tan ( 25 ) ) (\sqrt{3}+\tan(5)^\circ)(\sqrt{3}+\tan(10)^\circ)(\sqrt{3}+\tan(15)^\circ)(\sqrt{3}+\tan(20)^\circ)(\sqrt{3}+\tan(25)^\circ)

Notice that 25+5=30, so multiplying the first and last term might give us something.

( 3 + tan ( 5 ) ) ( 3 + tan ( 25 ) ) (\sqrt{3}+\tan(5)^\circ)(\sqrt{3}+\tan(25)^\circ) = 3 + 3 ( tan ( 5 ) + tan ( 25 ) ) + tan ( 5 ) tan ( 25 ) ( ) =3+\sqrt{3}(\tan(5)^\circ+\tan(25)^\circ)+\tan(5)^\circ \tan(25)^\circ \, (*)

We have,

tan ( 25 + 5 ) = tan ( 5 ) + tan ( 25 ) 1 tan ( 5 ) tan ( 25 ) = 1 3 \displaystyle \tan(25+5)^\circ=\frac{\tan(5)^\circ+\tan(25)^\circ}{1-\tan(5)^\circ\tan(25)^\circ}=\frac{1}{\sqrt{3}}

Rearranging, 3 ( tan ( 5 ) + tan ( 25 ) ) = 1 tan ( 5 ) tan ( 25 ) \sqrt{3}(\tan(5)^\circ+\tan(25)^\circ)=1-\tan(5)^\circ\tan(25)^\circ

Substituting in ( ) (*) , the product of the first and last terms is 4. Similarly, it can be shown that the product of second and fourth term is 4.

Now we need the value tan ( 15 ) \tan(15)^\circ . This can be easily calculated using the double angle formula for tan. Hence

tan ( 30 ) = 2 tan ( 15 ) 1 tan 2 ( 15 ) \tan(30)^\circ=\frac{2\tan(15)^\circ}{1-\tan^2(15)^\circ}

This gives us a quadratic in tan ( 15 ) \tan(15)^\circ . Solving and neglecting the negative root (because tan ( θ ) > 0 0 θ < π 2 \tan(\theta) > 0 \, \forall \, 0 \leq \theta <\frac{\pi}{2} ), we have

tan ( 15 ) = 3 + 2 \tan(15)^\circ=-\sqrt{3}+2

Hence, the final answer is, 4 4 ( 3 3 + 2 ) = 32 4\cdot 4 \cdot (\sqrt{3}-\sqrt{3}+2)=\fbox{32}

Michael Tang
Oct 8, 2013

We need to find a way to represent 3 + tan ( 5 i ) \sqrt3 + \tan(5i^{\circ}) as a fraction, so that terms may cancel when we take the given product. Consider the function f ( x ) = 3 + tan x , f(x) = \sqrt3 + \tan x, with all angles in degrees. We can write this function as f ( x ) = 3 + sin x cos x = 3 cos x + sin x cos x = 2 ( 3 2 cos x + 1 2 sin x ) cos x = 2 ( cos 3 0 cos x + sin 3 0 sin x ) cos x . \begin{aligned} f(x) &= \sqrt 3 + \dfrac{\sin x}{\cos x} \\ &= \dfrac{\sqrt 3 \cos x + \sin x}{\cos x} \\ &= \dfrac{2\left(\dfrac{\sqrt 3}{2}\cos x + \dfrac12\sin x\right)}{\cos x} \\ &= \dfrac{2 \left(\cos 30^\circ \cos x + \sin 30^\circ \sin x\right)}{\cos x}. \end{aligned}

Notice that we can use the addition formulas for cosine to rewrite the numerator of this fraction in a nicer way: we get 3 + tan x = 2 cos ( 30 x ) cos x (1) \qquad \sqrt3 + \tan x = \dfrac{2 \cos(30-x)}{\cos x} \qquad \textbf{(1)} as our result.

Applying equation ( 1 ) (1) to each term in our given product, we have i = 1 5 [ 3 + tan ( 5 i ) ] = [ 3 + tan 5 ] [ 3 + tan 1 0 ] [ 3 + tan 2 5 ] = 2 cos ( 30 5 ) cos 5 2 cos ( 30 10 ) cos 1 0 2 cos ( 30 25 ) cos 2 5 = 2 5 cos 5 cos 1 0 cos 1 5 cos 2 0 cos 2 5 cos 5 cos 1 0 cos 1 5 cos 2 0 cos 2 5 . \begin{aligned}&\prod_{i =1}^5 [\sqrt 3 + \tan(5i^\circ)] \\ &= [\sqrt 3 + \tan 5^\circ][\sqrt 3 + \tan 10^\circ]\cdots[\sqrt 3 + \tan 25^\circ] \\ &= \frac{2 \cos(30-5)^\circ}{\cos 5^\circ} \frac{2 \cos(30-10)^\circ}{\cos 10^\circ} \cdots \frac{2 \cos(30-25)^\circ}{\cos 25^\circ} \\ &= \frac{2^5 \cos 5^\circ \cos 10^\circ \cos 15^\circ \cos 20^\circ \cos 25^\circ}{\cos 5^\circ \cos 10^\circ \cos 15^\circ \cos 20^\circ \cos 25^\circ}. \end{aligned} All of the cosines cancel, leaving only 2 5 = 32 . 2^5 = \boxed{32}.

We know that cot ( 30 ) = 3 \cot(30)^{\circ}=\sqrt3 . First, we see that tan ( 30 ) = tan ( i ) + tan ( 30 i ) 1 tan ( i ) tan ( 30 i ) . \tan(30)^{\circ}=\dfrac{\tan(i)^{\circ}+\tan(30-i)^{\circ}}{1-\tan(i)^{\circ}\tan(30-i)^{\circ}}. Equivalently cot ( 30 ) . ( tan ( i ) + tan ( 30 i ) ) = 1 tan ( i ) tan ( 30 i ) . \cot(30)^{\circ}.(\tan(i)^{\circ}+\tan(30-i)^{\circ})=1-\tan(i)^{\circ}\tan(30-i)^{\circ}. So we have ( cot ( 30 ) + tan ( 30 i ) ) ( cot ( 30 ) + tan ( i ) ) = 1 + cot 2 ( 30 ) = 4. (\cot(30)^\circ+\tan(30-i)^{\circ})(\cot(30)^\circ+\tan(i)^{\circ})=1+\cot^2(30)^{\circ}=4. Then ( cot 3 0 + tan 5 ) ( cot 3 0 + tan 2 5 ) = 4 (\cot 30^{\circ}+\tan 5^{\circ})(\cot 30^{\circ}+\tan 25^{\circ})=4 ( cot 3 0 + tan 1 0 ) ( cot 3 0 + tan 2 0 ) = 4 (\cot 30^{\circ}+\tan 10^{\circ})(\cot 30^{\circ}+\tan 20^{\circ})=4 ( cot 3 0 + tan 1 5 ) 2 = 4 (\cot 30^{\circ}+\tan 15^{\circ})^2=4 Since cot 3 0 \cot 30^{\circ} and tan 1 5 \tan 15^{\circ} is greater than zero, then ( cot 3 0 + tan 1 5 ) = 2. (\cot 30^{\circ}+\tan 15^{\circ})=2. So i = 1 5 [ 3 + tan ( 5 i ) ] = 2.4.4 = 32 \prod_{i=1}^{5} \left [ \sqrt{3}+\tan(5i)^{\circ} \right ]=2.4.4=32

Krishna Jha
Oct 9, 2013

Each term can be written as

2 [ 3 2 c o s ( 5 i 0 ) + 1 2 s i n ( 5 i 0 c o s ( 5 i 0 ) ) ] 2*[\frac{\frac{\sqrt{3}}{2}cos(5i^{0})+\frac{1}{2}sin(5i^{0}}{cos(5i^{0}))}]

2 [ s i n ( ( 60 + 5 i ) 0 ) c o s ( 5 i 0 ) ) ] \Rightarrow2*[\frac{sin((60+5i)^{0})}{cos(5i^{0}))}] {using s i n ( A + B ) sin(A+B) }

Expanding the product, we can clearly see that the trgonometric terms of s i n sin and c o s cos in numerator and denominator cancel {using identity s i n ( 9 0 0 θ ) = c o s ( θ ) sin(90^{0}-\theta)=cos(\theta) } only giving us 2 5 = 32 2^{5}=\boxed{32}

We know that 3 = tan 60 \sqrt{3}=\tan{60}^\circ , so our product is: i = 1 5 [ tan 60 + tan 5 i ] = \prod_{i=1}^5 [\tan{60}+\tan{5i}]= ( tan 60 + tan 5 ) ( tan 60 + tan 10 ) ( tan 60 + tan 25 ) (\tan{60}+\tan{5})(\tan{60}+\tan{10})\ldots(\tan{60}+\tan{25}) From the tangent addition formula, tan ( a + b ) = tan a + tan b 1 tan a tan b \displaystyle \tan (a+b)=\frac{\tan{a}+\tan{b}}{1-\tan{a}\tan{b}} tan a + tan b = ( tan ( a + b ) ) ( 1 tan a tan b ) \displaystyle \implies \tan{a}+\tan{b}=(\tan (a+b))(1-\tan{a}\tan{b})

Applying this, we get that ( tan 60 + tan 5 ) ( tan 60 + tan 10 ) ( tan 60 + tan 25 ) = (\tan{60}+\tan{5})(\tan{60}+\tan{10})\ldots(\tan{60}+\tan{25})= ( tan 65 ) ( 1 tan 60 tan 5 ) ( tan 85 ) ( 1 tan 60 tan 25 ) = (\tan{65})(1-\tan{60}\tan{5})\ldots (\tan{85})(1-\tan{60}\tan{25})= ( tan 65 ) ( tan 85 ) ( 1 tan 60 tan 5 ) ( 1 tan 60 tan 25 ) = (\tan{65})\ldots(\tan{85})(1-\tan{60}\tan{5})\ldots(1-\tan{60}\tan{25})= Since tan 60 = 3 \tan60=\sqrt{3} , ( tan 65 ) ( tan 85 ) ( 1 3 tan 5 ) ( 1 3 tan 25 ) (\tan{65})\ldots(\tan{85})(1-\sqrt{3}\tan{5})\ldots(1-\sqrt{3}\tan{25}) Now we arrange the binomials like such: ( 1 3 tan 5 ) ( 1 3 tan 25 ) ( 1 3 tan 10 ) ( 1 3 tan 20 ) (1-\sqrt{3}\tan{5})(1-\sqrt{3}\tan{25})(1-\sqrt{3}\tan{10})(1-\sqrt{3}\tan{20}) ( 1 3 tan 15 ) = (1-\sqrt{3}\tan15)= And multiply the first two pairs to get: ( 1 3 ( tan 5 + tan 25 ) + 3 tan 5 tan 25 ) ( 1 3 ( tan 10 + tan 20 ) + 3 tan 10 tan 20 ) (1-\sqrt{3}(\tan5+\tan25)+3\tan5\tan25)(1-\sqrt{3}(\tan10+\tan20)+3\tan10\tan20) ( 1 3 tan 15 ) = (1-\sqrt{3}\tan15)= Applying our identity from the tangent addition formula to tan a + tan b \tan a+\tan b , we get: ( 1 3 ( tan 30 ( 1 tan 5 tan 25 ) ) + 3 tan 5 tan 25 ) (1-\sqrt{3}(\tan{30}(1-\tan5\tan25))+3\tan5\tan25) ( 1 3 ( tan 30 ( 1 tan 10 tan 20 ) ) + 3 tan 10 tan 20 ) (1-\sqrt{3}(\tan{30}(1-\tan10\tan20))+3\tan10\tan20) ( 1 3 tan 15 ) = (1-\sqrt{3}\tan15)= Simplifying and using the fact that 1 3 \displaystyle \frac{1}{\sqrt{3}} , ( 4 tan 5 tan 25 ) ( 4 tan 10 tan 20 ) ( 1 3 tan 15 ) (4\tan5\tan25)(4\tan10\tan20)(1-\sqrt{3}\tan15) Putting this back into our original expression, we get: 16 tan 5 tan 10 tan 20 tan 25 tan 65 tan 85 16\tan5\tan10\tan20\tan25\tan65\ldots\tan85 ( 1 3 tan 15 ) = (1-\sqrt{3}\tan15)= 16 tan 75 ( 1 3 tan 15 ) 16\tan{75}(1-\sqrt{3}\tan15) Everything tan a \tan a cancels except for tan 75 \tan75 . Simplifying, we get 16 tan 75 3 = 16 sin 75 3 cos 75 cos 75 = 16\tan75-\sqrt{3}=\frac{16\sin75-\sqrt{3}\cos75}{\cos75}= 32 ( 1 2 sin 75 3 2 cos 75 ) cos 75 = 32 sin 15 cos 75 = 32 \frac{32(\frac{1}{2}\sin75-\frac{\sqrt{3}}{2}\cos75)}{\cos75}=\frac{32\sin15}{\cos75}=\boxed{32} Where the sine addition formula was applied backwards in the above line.

find the identity of expression

3 + tan θ = 1 cos θ ( 3 cos θ + sin θ ) \sqrt{3}+\tan\theta=\frac{1}{\cos\theta}(\sqrt{3}\cos\theta+\sin\theta) = 2 cos θ ( sin π 3 + cos θ sin θ ) = 2 cos θ sin ( θ + π 3 ) =\frac{2}{\cos\theta}(\sin\frac{\pi}{3}+\cos\theta\sin\theta)=\frac{2}{\cos\theta}\cdot\sin(\theta+\frac{\pi}{3})

when you write all term of this problem's expression you will find that expression of sin , cos \sin,\cos cancle each other and you will get 2 5 2^5 is answer

Edmund Heng
Oct 8, 2013

tan 3 0 = tan 1 5 \tan 30^\circ=\tan 15^\circ , 1 3 = 2 tan 1 5 1 tan 2 1 5 \frac{1}{\sqrt3}=\frac{2 \tan 15^\circ}{1-\tan^2 15^\circ} Solving this we get tan 1 5 = 3 + 2 \tan 15^\circ=-\sqrt 3 +2 ( 3 2 -\sqrt 3 - 2 is ignored since tan 1 5 \tan 15^\circ is positive) For the rest ( 3 + tan 5 ) ( 3 + tan 2 5 ) ( 3 + tan 1 0 ) ( 3 + tan 2 0 ) ( \sqrt 3 + \tan 5^\circ )( \sqrt 3 + \tan 25^\circ )( \sqrt 3 + \tan 10^\circ )( \sqrt 3 + \tan 20^\circ ) ( 3 + ( 3 ) ( tan 5 + tan 2 5 ) + tan 5 tan 2 5 ) ( . . . ) (3 + (\sqrt 3)(\tan 5^\circ + \tan 25^\circ) + \tan 5^\circ \tan 25^\circ)( ... ) From tan 3 0 = tan ( 5 + 2 5 ) = tan ( 1 0 + 2 0 ) \tan 30^\circ=\tan (5^\circ + 25^\circ)=\tan (10^\circ + 20^\circ ) , 1 3 = tan 5 + tan 2 5 1 ( tan 5 ) ( tan 2 5 ) = . . . \frac {1}{ \sqrt 3 }=\frac { \tan 5^\circ + \tan 25^\circ }{ 1 - (\tan 5^\circ)(\tan 25^\circ)} = ... , 1 = ( 3 ) ( tan 5 + tan 2 5 ) + tan 5 tan 2 5 = . . . 1= (\sqrt 3)(\tan 5^\circ + \tan 25^\circ) + \tan 5^\circ \tan 25^\circ = ... So in the end we will have ( 3 + 1 ) ( 3 + 1 ) ( 3 3 + 2 ) = 32 ( 3 + 1 )( 3+1)( \sqrt 3 - \sqrt 3 + 2 ) = 32

sorry its tan 3 0 = tan 2 ( 15 ) \tan 30^\circ = \tan 2(15)^\circ

Edmund Heng - 7 years, 8 months ago
Zaccheo Bagnati
Oct 13, 2013

Remembering that:

  • t a n ( 15 ° ) = 2 3 tan(15°) = 2 - \sqrt{3}

  • t a n ( 30 ° ) = 1 3 tan(30°) = \frac{1}{\sqrt{3}}

  • t a n ( a + b ) = t a n ( a ) + t a n ( b ) 1 t a n ( a ) t a n ( b ) t a n ( a ) t a n ( b ) = 1 t a n ( a ) + t a n ( b ) t a n ( a + b ) tan(a + b) = \frac {tan(a) + tan(b)}{1 - tan(a) tan(b)} \iff tan(a) tan(b) = 1 - \frac{tan(a) + tan(b)} {tan(a+ b)}

We have, for 0 ° < x < 15 ° 0° \lt x \lt 15° : ( 3 + t a n ( 15 ° + x ) ) ( 3 + t a n ( 15 ° x ) ) = (\sqrt{3} + tan(15° + x)) (\sqrt{3} + tan(15° - x)) = 3 + 3 t a n ( 15 ° + x ) + 3 t a n ( 15 ° x ) + t a n ( 15 ° + x ) t a n ( 15 ° x ) = 3 + \sqrt{3} tan(15° + x) + \sqrt{3} tan(15° - x) + tan(15° + x) tan(15° -x) = 3 + 3 t a n ( 15 ° + x ) + 3 t a n ( 15 ° x ) + 1 t a n ( 15 ° + x ) t a n ( 30 ° ) t a n ( 15 ° x ) t a n ( 30 ° ) = 3 + \sqrt{3} tan(15° + x) + \sqrt{3} tan(15° - x) + 1 - \frac {tan(15° + x)}{tan(30°)} - \frac {tan(15° - x)}{tan(30°)} = = 4 = 4

Now we can rewrite the original expression as: i = 1 5 ( 3 + t a n ( 5 i ° ) ) = i = 2 2 ( 3 + t a n ( 15 ° + 5 i ° ) ) = \prod_{i = 1}^{5} (\sqrt{3} + tan(5i°) ) = \prod_{i = -2}^{2} (\sqrt{3} + tan(15° + 5i°) ) =

( 3 + t a n ( 15 ° ) i = 1 2 ( ( 3 + t a n ( 15 ° + 5 i ° ) ) ( 3 + t a n ( 15 ° 5 i ° ) ) ) = (\sqrt{3} + tan(15°) \prod_{i = 1}^{2} ((\sqrt{3} + tan(15° + 5i°)) (\sqrt{3} + tan(15° - 5i°))) =

= 2 × 4 × 4 = 32 = 2 \times 4 \times 4= 32

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...