This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice one! Thanks! :)
wonderful observation. wish i could see solutions like that...
Thanks everyone. @Jonathan, sometimes unconsciously,you get wonderful solutions.
elegant
Darn! I reached till the final step...just didn't think of expanding the product! Too good :D
Oh dear......I had thought of combining but never did realize that terms will cancel.....Nice solution
I didn't get the step from" √3/2 cos(5i°)...." to "sin(60+5i°)...".
Note that for any angle θ , 1 − tan θ tan ( 3 0 ∘ − θ ) tan θ + tan ( 3 0 ∘ − θ ) = tan ( θ + 3 0 ∘ − θ ) = 3 3 3 [ tan θ + tan ( 3 0 ∘ − θ ) ] = 1 − tan θ tan ( 3 0 ∘ − θ ) . Therefore, [ 3 + tan θ ] [ 3 + tan ( 3 0 ∘ − θ ) ] = 3 + 3 [ tan θ + tan ( 3 0 ∘ − θ ) ] + tan θ tan ( 3 0 ∘ − θ ) = 3 + 1 = 4 . We can pair up the 5 ∘ term with the 2 5 ∘ term and the 1 0 ∘ term with the 2 0 ∘ term, leaving the 1 5 ∘ term. But from the tangent half-angle formula or tangent angle difference formula, we have tan 1 5 ∘ = 2 − 3 . Thus, the product is equal to 4 2 ⋅ 2 = 3 2 .
i did the same way :D
If A + B = 3 0 ∘ , then we have:
tan ( A + B ) = 3 1 ⟹ tan A + tan B = 3 1 ( 1 − tan A tan B ) .
This gives us:
( 3 + tan A ) ( 3 + tan B ) = 3 + 3 ( tan A + tan B ) + tan A tan B = 4 .
Now denoting the product in the question by A , we have:
A 2 = i = 1 ∏ 5 ( 3 + tan ( 5 i ) ∘ ) j = 1 ∏ 5 ( 3 + tan ( 5 j ) ∘ ) = i = 1 ∏ 5 ( 3 + tan ( 5 i ) ∘ ) ( 3 + tan ( 5 ( 6 − i ) ) ∘ ) = 4 5 .
since 5 i + 5 ( 6 − i ) = 3 0 . This gives A = 2 5 = 3 2 .
( 3 + t a n θ ) ( 3 + t a n ( 3 0 ∘ − θ ) )
= ( 3 + t a n θ ) ( 3 + 1 + 3 1 t a n θ 3 1 − t a n θ )
= ( 3 + t a n θ ) ( 3 + t a n θ 4 ) = 4
Now, i = 1 ∏ 5 [ 3 + t a n ( 5 i ∘ ) ]
= 4 × 4 × ( 3 + t a n ( 1 5 ∘ ) ) (try to replace θ = 5 ∘ and 1 0 ∘ )
= 4 × 4 × 2 = 3 2
The expression to be evaluated is: ( 3 + tan ( 5 ) ∘ ) ( 3 + tan ( 1 0 ) ∘ ) ( 3 + tan ( 1 5 ) ∘ ) ( 3 + tan ( 2 0 ) ∘ ) ( 3 + tan ( 2 5 ) ∘ )
Notice that 25+5=30, so multiplying the first and last term might give us something.
( 3 + tan ( 5 ) ∘ ) ( 3 + tan ( 2 5 ) ∘ ) = 3 + 3 ( tan ( 5 ) ∘ + tan ( 2 5 ) ∘ ) + tan ( 5 ) ∘ tan ( 2 5 ) ∘ ( ∗ )
We have,
tan ( 2 5 + 5 ) ∘ = 1 − tan ( 5 ) ∘ tan ( 2 5 ) ∘ tan ( 5 ) ∘ + tan ( 2 5 ) ∘ = 3 1
Rearranging, 3 ( tan ( 5 ) ∘ + tan ( 2 5 ) ∘ ) = 1 − tan ( 5 ) ∘ tan ( 2 5 ) ∘
Substituting in ( ∗ ) , the product of the first and last terms is 4. Similarly, it can be shown that the product of second and fourth term is 4.
Now we need the value tan ( 1 5 ) ∘ . This can be easily calculated using the double angle formula for tan. Hence
tan ( 3 0 ) ∘ = 1 − tan 2 ( 1 5 ) ∘ 2 tan ( 1 5 ) ∘
This gives us a quadratic in tan ( 1 5 ) ∘ . Solving and neglecting the negative root (because tan ( θ ) > 0 ∀ 0 ≤ θ < 2 π ), we have
tan ( 1 5 ) ∘ = − 3 + 2
Hence, the final answer is, 4 ⋅ 4 ⋅ ( 3 − 3 + 2 ) = 3 2
We need to find a way to represent 3 + tan ( 5 i ∘ ) as a fraction, so that terms may cancel when we take the given product. Consider the function f ( x ) = 3 + tan x , with all angles in degrees. We can write this function as f ( x ) = 3 + cos x sin x = cos x 3 cos x + sin x = cos x 2 ( 2 3 cos x + 2 1 sin x ) = cos x 2 ( cos 3 0 ∘ cos x + sin 3 0 ∘ sin x ) .
Notice that we can use the addition formulas for cosine to rewrite the numerator of this fraction in a nicer way: we get 3 + tan x = cos x 2 cos ( 3 0 − x ) (1) as our result.
Applying equation ( 1 ) to each term in our given product, we have i = 1 ∏ 5 [ 3 + tan ( 5 i ∘ ) ] = [ 3 + tan 5 ∘ ] [ 3 + tan 1 0 ∘ ] ⋯ [ 3 + tan 2 5 ∘ ] = cos 5 ∘ 2 cos ( 3 0 − 5 ) ∘ cos 1 0 ∘ 2 cos ( 3 0 − 1 0 ) ∘ ⋯ cos 2 5 ∘ 2 cos ( 3 0 − 2 5 ) ∘ = cos 5 ∘ cos 1 0 ∘ cos 1 5 ∘ cos 2 0 ∘ cos 2 5 ∘ 2 5 cos 5 ∘ cos 1 0 ∘ cos 1 5 ∘ cos 2 0 ∘ cos 2 5 ∘ . All of the cosines cancel, leaving only 2 5 = 3 2 .
We know that cot ( 3 0 ) ∘ = 3 . First, we see that tan ( 3 0 ) ∘ = 1 − tan ( i ) ∘ tan ( 3 0 − i ) ∘ tan ( i ) ∘ + tan ( 3 0 − i ) ∘ . Equivalently cot ( 3 0 ) ∘ . ( tan ( i ) ∘ + tan ( 3 0 − i ) ∘ ) = 1 − tan ( i ) ∘ tan ( 3 0 − i ) ∘ . So we have ( cot ( 3 0 ) ∘ + tan ( 3 0 − i ) ∘ ) ( cot ( 3 0 ) ∘ + tan ( i ) ∘ ) = 1 + cot 2 ( 3 0 ) ∘ = 4 . Then ( cot 3 0 ∘ + tan 5 ∘ ) ( cot 3 0 ∘ + tan 2 5 ∘ ) = 4 ( cot 3 0 ∘ + tan 1 0 ∘ ) ( cot 3 0 ∘ + tan 2 0 ∘ ) = 4 ( cot 3 0 ∘ + tan 1 5 ∘ ) 2 = 4 Since cot 3 0 ∘ and tan 1 5 ∘ is greater than zero, then ( cot 3 0 ∘ + tan 1 5 ∘ ) = 2 . So i = 1 ∏ 5 [ 3 + tan ( 5 i ) ∘ ] = 2 . 4 . 4 = 3 2
Each term can be written as
2 ∗ [ c o s ( 5 i 0 ) ) 2 3 c o s ( 5 i 0 ) + 2 1 s i n ( 5 i 0 ]
⇒ 2 ∗ [ c o s ( 5 i 0 ) ) s i n ( ( 6 0 + 5 i ) 0 ) ] {using s i n ( A + B ) }
Expanding the product, we can clearly see that the trgonometric terms of s i n and c o s in numerator and denominator cancel {using identity s i n ( 9 0 0 − θ ) = c o s ( θ ) } only giving us 2 5 = 3 2
We know that 3 = tan 6 0 ∘ , so our product is: i = 1 ∏ 5 [ tan 6 0 + tan 5 i ] = ( tan 6 0 + tan 5 ) ( tan 6 0 + tan 1 0 ) … ( tan 6 0 + tan 2 5 ) From the tangent addition formula, tan ( a + b ) = 1 − tan a tan b tan a + tan b ⟹ tan a + tan b = ( tan ( a + b ) ) ( 1 − tan a tan b )
Applying this, we get that ( tan 6 0 + tan 5 ) ( tan 6 0 + tan 1 0 ) … ( tan 6 0 + tan 2 5 ) = ( tan 6 5 ) ( 1 − tan 6 0 tan 5 ) … ( tan 8 5 ) ( 1 − tan 6 0 tan 2 5 ) = ( tan 6 5 ) … ( tan 8 5 ) ( 1 − tan 6 0 tan 5 ) … ( 1 − tan 6 0 tan 2 5 ) = Since tan 6 0 = 3 , ( tan 6 5 ) … ( tan 8 5 ) ( 1 − 3 tan 5 ) … ( 1 − 3 tan 2 5 ) Now we arrange the binomials like such: ( 1 − 3 tan 5 ) ( 1 − 3 tan 2 5 ) ( 1 − 3 tan 1 0 ) ( 1 − 3 tan 2 0 ) ( 1 − 3 tan 1 5 ) = And multiply the first two pairs to get: ( 1 − 3 ( tan 5 + tan 2 5 ) + 3 tan 5 tan 2 5 ) ( 1 − 3 ( tan 1 0 + tan 2 0 ) + 3 tan 1 0 tan 2 0 ) ( 1 − 3 tan 1 5 ) = Applying our identity from the tangent addition formula to tan a + tan b , we get: ( 1 − 3 ( tan 3 0 ( 1 − tan 5 tan 2 5 ) ) + 3 tan 5 tan 2 5 ) ( 1 − 3 ( tan 3 0 ( 1 − tan 1 0 tan 2 0 ) ) + 3 tan 1 0 tan 2 0 ) ( 1 − 3 tan 1 5 ) = Simplifying and using the fact that 3 1 , ( 4 tan 5 tan 2 5 ) ( 4 tan 1 0 tan 2 0 ) ( 1 − 3 tan 1 5 ) Putting this back into our original expression, we get: 1 6 tan 5 tan 1 0 tan 2 0 tan 2 5 tan 6 5 … tan 8 5 ( 1 − 3 tan 1 5 ) = 1 6 tan 7 5 ( 1 − 3 tan 1 5 ) Everything tan a cancels except for tan 7 5 . Simplifying, we get 1 6 tan 7 5 − 3 = cos 7 5 1 6 sin 7 5 − 3 cos 7 5 = cos 7 5 3 2 ( 2 1 sin 7 5 − 2 3 cos 7 5 ) = cos 7 5 3 2 sin 1 5 = 3 2 Where the sine addition formula was applied backwards in the above line.
find the identity of expression
3 + tan θ = cos θ 1 ( 3 cos θ + sin θ ) = cos θ 2 ( sin 3 π + cos θ sin θ ) = cos θ 2 ⋅ sin ( θ + 3 π )
when you write all term of this problem's expression you will find that expression of sin , cos cancle each other and you will get 2 5 is answer
tan 3 0 ∘ = tan 1 5 ∘ , 3 1 = 1 − tan 2 1 5 ∘ 2 tan 1 5 ∘ Solving this we get tan 1 5 ∘ = − 3 + 2 ( − 3 − 2 is ignored since tan 1 5 ∘ is positive) For the rest ( 3 + tan 5 ∘ ) ( 3 + tan 2 5 ∘ ) ( 3 + tan 1 0 ∘ ) ( 3 + tan 2 0 ∘ ) ( 3 + ( 3 ) ( tan 5 ∘ + tan 2 5 ∘ ) + tan 5 ∘ tan 2 5 ∘ ) ( . . . ) From tan 3 0 ∘ = tan ( 5 ∘ + 2 5 ∘ ) = tan ( 1 0 ∘ + 2 0 ∘ ) , 3 1 = 1 − ( tan 5 ∘ ) ( tan 2 5 ∘ ) tan 5 ∘ + tan 2 5 ∘ = . . . , 1 = ( 3 ) ( tan 5 ∘ + tan 2 5 ∘ ) + tan 5 ∘ tan 2 5 ∘ = . . . So in the end we will have ( 3 + 1 ) ( 3 + 1 ) ( 3 − 3 + 2 ) = 3 2
sorry its tan 3 0 ∘ = tan 2 ( 1 5 ) ∘
Remembering that:
t a n ( 1 5 ° ) = 2 − 3
t a n ( 3 0 ° ) = 3 1
t a n ( a + b ) = 1 − t a n ( a ) t a n ( b ) t a n ( a ) + t a n ( b ) ⟺ t a n ( a ) t a n ( b ) = 1 − t a n ( a + b ) t a n ( a ) + t a n ( b )
We have, for 0 ° < x < 1 5 ° : ( 3 + t a n ( 1 5 ° + x ) ) ( 3 + t a n ( 1 5 ° − x ) ) = 3 + 3 t a n ( 1 5 ° + x ) + 3 t a n ( 1 5 ° − x ) + t a n ( 1 5 ° + x ) t a n ( 1 5 ° − x ) = 3 + 3 t a n ( 1 5 ° + x ) + 3 t a n ( 1 5 ° − x ) + 1 − t a n ( 3 0 ° ) t a n ( 1 5 ° + x ) − t a n ( 3 0 ° ) t a n ( 1 5 ° − x ) = = 4
Now we can rewrite the original expression as: ∏ i = 1 5 ( 3 + t a n ( 5 i ° ) ) = ∏ i = − 2 2 ( 3 + t a n ( 1 5 ° + 5 i ° ) ) =
( 3 + t a n ( 1 5 ° ) ∏ i = 1 2 ( ( 3 + t a n ( 1 5 ° + 5 i ° ) ) ( 3 + t a n ( 1 5 ° − 5 i ° ) ) ) =
= 2 × 4 × 4 = 3 2
Problem Loading...
Note Loading...
Set Loading...
i = 1 ∏ 5 [ 3 + tan ( 5 i ) ∘ ] = i = 1 ∏ 5 cos ( 5 i ) ∘ 3 cos ( 5 i ) ∘ + sin ( 5 i ) ∘
= i = 1 ∏ 5 [ 2 cos ( 5 i ) ∘ 2 3 cos ( 5 i ) ∘ + 2 1 sin ( 5 i ) ∘ ] = i = 1 ∏ 5 [ 2 cos ( 5 i ) ∘ sin ( 6 0 + 5 i ) ∘ ]
= 2 5 ∗ cos 5 ∘ sin 6 5 ∘ cos 1 0 ∘ sin 7 0 ∘ cos 1 5 ∘ sin 7 5 ∘ cos 2 0 ∘ sin 8 0 ∘ cos 2 5 ∘ sin 8 5 ∘ = 3 2 .
All other terms cancel as sin x ∘ = cos ( 9 0 − x ) ∘ .