Mutant Ellipsoid

Calculus Level 5

The volume of the region bounded by 16 x 2 + 81 y 4 + 64 z 6 = 1 16x^{2}+81y^{4}+64z^{6}=1 can be expressed, in simplest terms, as Γ ( A B ) Γ ( C D ) E × Γ ( F G ) π {\Large \frac{\Gamma \left( \frac{A}{B} \right)\Gamma \left( \frac{C}{D} \right)}{E\times \Gamma \left( \frac{F}{G} \right)}\sqrt{\pi }} , where A , B , C , D , E , F A, B, C, D, E, F and G G are positive integers , with gcd ( A , B ) = gcd ( C , D ) = gcd ( F , G ) = 1 \gcd(A,B) = \gcd(C,D) = \gcd(F,G) = 1 .

If we know that A B , C D , F G < 1 \dfrac AB, \dfrac CD , \dfrac FG < 1 , find A + B + C + D + E + F + G A+B+C+D+E+F+G .


Thanks to Michael Mendrin for finding the simplification error in the original problem.


The answer is 167.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

By symmetry,

\start e q u a t i o n V = 8 0 1 4 0 1 3 ( 1 16 x 2 ) 1 / 4 1 2 ( 1 16 x 2 81 y 4 ) 1 / 6 d y d x \LARGE{\start{equation}V=8\int _{ 0 }^{ \frac { 1 }{ 4 } } \int _{ 0 }^{ \frac { 1 }{ 3 } (1-16x^{ 2 })^{ 1/4 } } \frac { 1 }{ 2 } (1-16x^{ 2 }-81y^{ 4 })^{ 1/6 }dydx}

= 4 0 1 4 ( 1 16 x 2 ) 1 / 6 d x 0 1 3 ( 1 16 x 2 ) 1 / 4 ( 1 81 y 4 1 16 x 2 ) 1 / 6 d y \LARGE{=4\int _{ 0 }^{ \frac { 1 }{ 4 } } (1-16x^{2})^{1/6}dx\int _{ 0 }^{ \frac { 1 }{ 3 } (1-16x^{ 2 })^{ 1/4 } } (1-\frac{81y^{ 4 }}{1-16x^{2}})^{ 1/6 }dy}

A substitution to get the integral into the form of the beta function.

u = 81 y 4 1 16 x 2 \LARGE{u = \frac{81y^{4}}{1-16x^{2}}} --> d u = 324 y 3 1 16 x 2 d y \LARGE{du = \frac{324y^{3}}{1-16x^{2}}}dy

V = 1 3 0 1 / 4 ( 1 16 x 2 ) 7 / 6 3 / 4 d x 0 1 u 1 / 4 1 ( 1 u ) 7 / 6 1 d u \LARGE{V=\frac{1}{3}\int_{0}^{1/4}(1-16x^{2})^{7/6-3/4}dx\int_{0}^{1}u^{1/4-1}(1-u)^{7/6-1}du}

= 1 3 B ( 1 4 , 7 6 ) 0 1 / 4 ( 1 16 x 2 ) 5 / 12 d x \LARGE{=\frac{1}{3}B(\frac{1}{4},\frac{7}{6})\int_{0}^{1/4}(1-16x^{2})^{5/12}dx}

And again:

u = 16 x 2 \LARGE{u = 16x^{2}} --> d u = 32 x d x \LARGE{du = 32x dx}

V = 1 96 B ( 1 4 , 7 6 ) 0 1 4 u 1 / 2 1 ( 1 u 17 / 12 1 ) d u \LARGE{V=\frac{1}{96}B(\frac{1}{4},\frac{7}{6})\int_{0}^{1}4u^{1/2-1}(1-u^{17/12-1})du}

= 1 24 B ( 1 4 , 7 6 ) B ( 1 2 , 17 12 ) \LARGE{=\frac{1}{24}B(\frac{1}{4},\frac{7}{6})B(\frac{1}{2},\frac{17}{12})}

= Γ ( 1 4 ) Γ ( 7 6 ) Γ ( 1 2 ) Γ ( 17 12 ) 24 × Γ ( 17 12 ) Γ ( 23 12 ) = Γ ( 1 4 ) Γ ( 7 6 ) 24 × Γ ( 23 12 ) π = 1 6 Γ ( 1 4 ) Γ ( 1 6 ) 24 × 11 12 Γ ( 11 12 ) π = Γ ( 1 4 ) Γ ( 1 6 ) 132 × Γ ( 11 12 ) π \LARGE{=\frac{\Gamma (\frac{1}{4})\Gamma (\frac{7}{6})\Gamma (\frac{1}{2})\Gamma (\frac{17}{12})}{24\times \Gamma (\frac{17}{12})\Gamma (\frac{23}{12})}=\frac{\Gamma(\frac{1}{4})\Gamma(\frac{7}{6})}{24\times \Gamma(\frac{23}{12})}\sqrt{\pi }=\frac{\frac{1}{6}\Gamma(\frac{1}{4})\Gamma(\frac{1}{6})}{24\times \frac{11}{12}\Gamma(\frac{11}{12})}\sqrt{\pi }=\frac{\Gamma(\frac{1}{4})\Gamma(\frac{1}{6})}{132\times\Gamma(\frac{11}{12})}\sqrt{\pi }}

A + B + C + D + E + F + G = 1 + 4 + 1 + 6 + 132 + 11 + 12 = 167 \LARGE{A+B+C+D+E+F+G=\color{#3D99F6}{1+4+1+6+132+11+12}=\color{#D61F06}{\boxed{167}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...