Mutated Arctangent Power Series

Calculus Level 3

Find the Taylor series centered at x = 0 x = 0 for the function f ( x ) = 3 x tan 1 ( 4 x 2 ) f(x) = 3x\tan^{-1}(4x^2)

3 n = 0 ( 1 ) n 4 2 n + 1 x 4 n + 3 2 n + 1 3\sum_{n=0}^{\infty}(-1)^n \frac{4^{2n + 1}x^{4n + 3}}{2n + 1} 3 n = 0 ( 1 ) n 4 2 n + 1 x 4 n + 4 2 n + 1 3\sum_{n=0}^{\infty}(-1)^n \frac{4^{2n + 1}x^{4n + 4}}{2n + 1} 3 n = 0 ( 1 ) n 4 2 n + 1 x 4 n + 2 ( 2 n + 1 ) ! 3\sum_{n=0}^{\infty}(-1)^n \frac{4^{2n + 1}x^{4n + 2}}{(2n + 1)!} 3 n = 0 ( 1 ) n 4 2 n + 1 x 4 n + 2 2 n + 1 3\sum_{n=0}^{\infty}(-1)^n \frac{4^{2n + 1}x^{4n + 2}}{2n + 1}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

f ( x ) = 3 x tan 1 ( 4 x 2 ) By Maclaurin series or Taylor series centered at x = 0 = 3 x n = 0 ( 1 ) n ( 4 x 2 ) 2 n + 1 2 n + 1 f ( x ) = 3 n = 0 ( 1 ) n 4 2 n + 1 x 4 n + 3 2 n + 1 \begin{aligned} f(x) & = 3x \color{#3D99F6}{\tan^{-1} (4x^2)} & \small \color{#3D99F6}{\text{By Maclaurin series or Taylor series centered at }x=0} \\ & = 3x\color{#3D99F6}{\sum_{n=0}^\infty (-1)^n\frac{(4x^2)^{2n+1}}{2n+1}} \\ \implies f(x) & = \boxed{\displaystyle 3\sum_{n=0}^\infty (-1)^n\frac{4^{2n+1}x^{4n+3}}{2n+1}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...