Mutual I’m Sure

Geometry Level 4

The centers of the three exterior circles of four mutually tangent circles are connected to form a right triangle with a perimeter of 329 329 . If the radius of the interior circle and the area of the triangle are also both integers, find the area of the triangle.


The answer is 4418.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chris Lewis
Jan 13, 2021

Let the radii of the three outer circles be a < b < c a<b<c , so that the sides of the right-angled triangle are a + b a+b , a + c a+c and b + c b+c . Let P = 329 P=329 be the perimeter of this triangle; let T T be its area; and let r r be the radius of the interior circle. We're told that r r and T T are integers; and we want to find T T .

The idea will be to find a relationship between r r , P P and T T by eliminating a , b , c a,b,c from various equations. (This is useful as we don't know if a , b , c a,b,c are integers or not.)

Adding up the sides, 2 ( a + b + c ) = P {\color{#3D99F6} 2(a+b+c)=P}

By Pythagoras, ( a + b ) 2 + ( a + c ) 2 = ( b + c ) 2 a ( a + b + c ) = b c (a+b)^2+(a+c)^2=(b+c)^2 \Rightarrow {\color{#333333} a(a+b+c)=bc}

Using the expression for the perimeter, this is a P = 2 b c {\color{#3D99F6} aP=2bc}

The area of the triangle is T = ( a + b ) ( a + c ) 2 {\color{#3D99F6} T=\frac{(a+b)(a+c)}{2}}

Now, the blue equations are symmetric in b b and c c (we can swap them without changing the equations). So, let u = b c u=bc and v = b + c v=b+c ; the equations become 2 ( a + v ) = P a P = 2 u 2 T = a 2 + a v + u 2(a+v)=P \;\;\;\;\; aP=2u \;\;\;\;\; 2T=a^2+av+u

We get v = P 2 a v=\frac{P}{2}-a and u = a P 2 u=\frac{aP}{2} ; substituting, 2 T = a 2 + a ( P 2 a ) + a P 2 = a P 2T=a^2+a \left(\frac{P}{2}-a \right)+\frac{aP}{2}=aP

so a = 2 T P a=\frac{2T}{P} .

Plugging back in, we get u = T u=T and v = P 2 2 T P v=\frac{P}{2}-\frac{2T}{P} .

By Descartes' circle theorem, 1 r = 1 a + 1 b + 1 c + 1 b c + 1 c a + 1 a b \frac{1}{r}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\sqrt{\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}}

Substituting from above, things cancel out nicely to give r = P T 2 P 2 2 T r=\frac{PT}{2P^2-2T}

Rearranging, 2 r P 2 2 r T = P T 2rP^2-2rT=PT

Note that, for a given perimeter, the largest right-angled triangle is an isosceles one, with area T max = 1 4 ( 3 2 2 ) P 2 T_{\max} = \frac14 \left(3 - 2\sqrt2 \right) P^2 . In this case, that's around 4642.8 4642.8 .

The only integer solution to the final equation satisfying this constraint is r = 7 r=7 and T = 4418 T=\boxed{4418} .

@David Vreken - phewf, great problem but tough!! I was really surprised at the result T = u T=u above - I bet there's a better way to get to that geometrically.

Is this anything like your approach? Or did I miss a shortcut?

Chris Lewis - 5 months ago

Log in to reply

If the sides of the triangle are a 2 = a + b a_2 = a + b , b 2 = a + c b_2 = a + c , and c 2 = b + c c_2 = b + c , and the semiperimeter is s = 1 2 ( a 2 + b 2 + c 2 ) = a + b + c s = \frac{1}{2}(a_2 + b_2 + c_2) = a + b + c , and a = a + b + c ( b + c ) = s c 2 a = a + b + c - (b + c) = s - c_2 , b = a + b + c ( a + c ) = s b 2 b = a + b + c - (a + c) = s - b_2 , and c = a + b + c ( a + b ) = s a 2 c = a + b + c - (a + b) = s - a_2 , which is useful for applying Heron's formula T = s ( s a 2 ) ( s b 2 ) ( s c 2 ) T = \sqrt{s(s - a_2)(s - b_2)(s - c_2)} . This fact help me simplify Descartes's circle theorem, although it was still pretty long and I'm not sure if it was a better approach than yours.

David Vreken - 4 months, 4 weeks ago

With a bit of hunting on the encyclopedia of triangle centres it turns out the centre of the small circle is the equal detour point .

Chris Lewis - 4 months, 4 weeks ago

Log in to reply

Thanks! I was trying to see if there was a name for it earlier but couldn't find it.

David Vreken - 4 months, 4 weeks ago

Log in to reply

Finding things in the ETC is a bit of a puzzle in itself. The small circle is the "inner Soddy circle" of the triangle, although that seems to be just another way of describing the tangent circles. The detour thing is quite a surprise.

Chris Lewis - 4 months, 4 weeks ago
David Vreken
Jan 13, 2021

Let the radii of the three exterior circles be r 1 r_1 , r 2 r_2 , and r 3 r_3 , so that the legs of the right triangle are a = r 1 + r 2 a = r_1 + r_2 and b = r 1 + r 3 b = r_1 + r_3 and the hypotenuse is c = r 2 + r 3 c = r_2 + r_3 .

The semiperimeter is then s = 1 2 ( a + b + c ) = 1 2 ( ( r 1 + r 2 ) + ( r 1 + r 3 ) + ( r 2 + r 3 ) ) = r 1 + r 2 + r 3 s = \frac{1}{2}(a + b + c) = \frac{1}{2}((r_1 + r_2) + (r_1 + r_3) + (r_2 + r_3)) = r_1 + r_2 + r_3 , so s a = ( r 1 + r 2 + r 3 ) ( r 1 + r 2 ) = r 3 s - a = (r_1 + r_2 + r_3) - (r_1 + r_2) = r_3 .

Similarly, s b = r 2 s - b = r_2 and s c = r 1 s - c = r_1 .

The semiperimeter is also half the perimeter, so s = 1 2 P = 329 2 s = \frac{1}{2}P = \frac{329}{2} .

By Heron's formula the area of the triangle is T = s ( s a ) ( s b ) ( s c ) T = \sqrt{s(s - a)(s - b)(s - c)} . Substituting s s , s a s - a , s b s- b , and s c s - c from above gives T = 329 r 1 r 2 r 3 2 T = \sqrt{\cfrac{329r_1r_2r_3}{2}} , and rearranging gives r 1 r 2 r 3 = 2 T 2 329 r_1r_2r_3 = \cfrac{2T^2}{329} .

By the Pythagorean Theorem, ( r 1 + r 2 ) 2 + ( r 1 + r 3 ) 2 = ( r 2 + r 3 ) 2 (r_1 + r_2)^2 + (r_1 + r_3)^2 = (r_2 + r_3)^2 , which rearranges to r 1 r 2 + r 1 r 3 + r 2 r 3 = 2 r 2 r 3 r 1 2 r_1r_2 + r_1r_3 + r_2r_3 = 2r_2r_3 - r_1^2 .

By the area of the triangle equation, T = 1 2 ( r 1 + r 2 ) ( r 1 + r 3 ) T = \frac{1}{2}(r_1 + r_2)(r_1 + r_3) , which rearranges to r 1 r 2 + r 1 r 3 + r 2 r 3 = 2 T r 1 2 r_1r_2 + r_1r_3 + r_2r_3 = 2T - r_1^2 .

That means 2 T = r 1 r 2 + r 1 r 3 + r 2 r 3 + r 1 2 = 2 r 2 r 3 2T = r_1r_2 + r_1r_3 + r_2r_3 + r_1^2 = 2r_2r_3 , so T = r 2 r 3 T = r_2r_3 .

Substituting T = r 2 r 3 T = r_2r_3 into r 1 r 2 r 3 = 2 T 2 329 r_1r_2r_3 = \cfrac{2T^2}{329} gives r 1 = 2 T 329 r_1 = \cfrac{2T}{329} .

Substituting r 1 = 2 T 329 r_1 = \cfrac{2T}{329} into r 1 r 2 + r 1 r 3 + r 2 r 3 = 2 T r 1 2 r_1r_2 + r_1r_3 + r_2r_3 = 2T - r_1^2 gives r 1 r 2 + r 1 r 3 + r 2 r 3 = 2 T 4 T 2 32 9 2 r_1r_2 + r_1r_3 + r_2r_3 = 2T - \cfrac{4T^2}{329^2}

By Descartes' Theorem , the reciprocal of the radius d d of the interior circle is 1 d = 1 r 1 + 1 r 2 + 1 r 3 + 2 1 r 1 r 2 + 1 r 1 r 3 + 1 r 2 r 3 \cfrac{1}{d} = \cfrac{1}{r_1} + \cfrac{1}{r_2} + \cfrac{1}{r_3} + 2\sqrt{\cfrac{1}{r_1r_2} + \cfrac{1}{r_1r_3} + \cfrac{1}{r_2r_3}} .

This rearranges to d = r 1 r 2 r 3 r 1 r 2 + r 1 r 3 + r 2 r 3 + 2 ( r 1 + r 2 + r 3 ) r 1 r 2 r 3 d = \cfrac{r_1r_2r_3}{r_1r_2 + r_1r_3 + r_2r_3 + 2\sqrt{(r_1 + r_2 + r_3)r_1r_2r_3}} .

Substituting r 1 + r 2 + r 3 = 329 2 r_1 + r_2 + r_3 = \cfrac{329}{2} , r 1 r 2 r 3 = 2 T 2 329 r_1r_2r_3 = \cfrac{2T^2}{329} , and r 1 r 2 + r 1 r 3 + r 2 r 3 = 2 T 4 T 2 32 9 2 r_1r_2 + r_1r_3 + r_2r_3 = 2T - \cfrac{4T^2}{329^2} into d d gives d = 2 T 2 329 2 T 4 T 2 32 9 2 + 2 329 2 2 T 2 329 = 329 T 2 ( 32 9 2 T ) d = \cfrac{\frac{2T^2}{329}}{2T - \frac{4T^2}{329^2} + 2\sqrt{\frac{329}{2} \cdot \frac{2T^2}{329}}} = \cfrac{329T}{2(329^2 - T)} .

The equation d = 329 T 2 ( 32 9 2 T ) d = \cfrac{329T}{2(329^2 - T)} can be rearranged to ( 32 9 2 T ) ( 2 d + 329 ) = 32 9 3 (329^2 - T)(2d + 329) = 329^3 .

Therefore, both 32 9 2 T 329^2 - T and 2 d + 329 2d + 329 are positive factors of 32 9 3 329^3 , so 32 9 2 T > 0 329^2 - T > 0 , or T < 32 9 2 T < 329^2 .

Let f f be the factor of 32 9 3 329^3 such that f = 32 9 2 T > 0 f = 329^2 - T > 0 . Then T = 32 9 2 f T = 329^2 - f , and since T T is positive, f < 32 9 2 f < 329^2 , or f < 108241 f < 108241 .

Now for a right triangle, P = a + b + a 2 + b 2 P = a + b + \sqrt{a^2 + b^2} and T = 1 2 a b T = \frac{1}{2}ab . Solving for a a in terms of P P and T T gives a = 1 4 P ( P 2 + 4 T ± P 4 24 P 2 T + 16 T 2 ) a = \frac{1}{4P}(P^2 + 4T \pm \sqrt{P^4 - 24P^2T + 16T^2}) , so from the discriminant P 4 24 P 2 T + 16 T 2 > 0 P^4 - 24P^2T + 16T^2 > 0 we know that either T < 1 4 ( 3 2 2 ) P 2 T < \frac{1}{4}(3 - 2\sqrt{2})P^2 or T > 1 4 ( 3 + 2 2 ) P 2 T > \frac{1}{4}(3 + 2\sqrt{2})P^2 .

So for P = 329 P = 329 , either T < 1 4 ( 3 2 2 ) 32 9 2 T < \frac{1}{4}(3 - 2\sqrt{2})329^2 or T > 1 4 ( 3 + 2 2 ) 32 9 2 T > \frac{1}{4}(3 + 2\sqrt{2})329^2 . However, since T < 32 9 2 T < 329^2 , T 1 4 ( 3 + 2 2 ) 32 9 2 T \ngtr \frac{1}{4}(3 + 2\sqrt{2})329^2 , so T < 1 4 ( 3 2 2 ) 32 9 2 T < \frac{1}{4}(3 - 2\sqrt{2})329^2 . In other words, T < 4643 T < 4643 .

Since T = 32 9 2 f T = 329^2 - f , that means 32 9 2 f < 4643 329^2 - f < 4643 , and this solves to 103598 < f 103598 < f .

Therefore, 103598 < f < 108241 103598 < f < 108241 . Testing the ( 3 + 1 ) ( 3 + 1 ) = 16 (3 + 1)(3 + 1) = 16 possible factors of 32 9 3 = 7 3 4 7 3 329^3 = 7^3 47^3 ( 1 1 , 7 7 , 47 47 , 49 49 , 329 329 , 343 343 , 2209 2209 , 2303 2303 , 15463 15463 , 16121 16121 , 103823 103823 , 108241 108241 , 726761 726761 , 757687 757687 , 5087327 5087327 , and 35611289 35611289 ), only 103823 103823 is within this range, so f = 103823 f = 103823 .

Therefore, T = 32 9 2 f = 32 9 2 103823 = 4418 T = 329^2 - f = 329^2 - 103823 = \boxed{4418} .


Also:

d = 329 T 2 ( 32 9 2 T ) = 329 4418 2 ( 32 9 2 4418 ) = 7 d = \cfrac{329T}{2(329^2 - T)} = \cfrac{329 \cdot 4418}{2(329^2 - 4418)} = 7

a = 1 4 P ( P 2 + 4 T P 4 24 P 2 T + 16 T 2 ) = 1 4 329 ( 32 9 2 + 4 T 32 9 4 24 32 9 2 4418 + 16 441 8 2 ) = 47 28 ( 57 113 ) a = \cfrac{1}{4P}(P^2 + 4T - \sqrt{P^4 - 24P^2T + 16T^2}) = \cfrac{1}{4 \cdot 329}(329^2 + 4T - \sqrt{329^4 - 24 \cdot 329^2 \cdot 4418 + 16 \cdot 4418^2}) = \cfrac{47}{28}(57 - \sqrt{113})

b = 1 4 P ( P 2 + 4 T + P 4 24 P 2 T + 16 T 2 ) = 1 4 329 ( 32 9 2 + 4 T + 32 9 4 24 32 9 2 4418 + 16 441 8 2 ) = 47 28 ( 57 + 113 ) b = \cfrac{1}{4P}(P^2 + 4T + \sqrt{P^4 - 24P^2T + 16T^2}) = \cfrac{1}{4 \cdot 329}(329^2 + 4T + \sqrt{329^4 - 24 \cdot 329^2 \cdot 4418 + 16 \cdot 4418^2}) = \cfrac{47}{28}(57 + \sqrt{113})

c = a 2 + b 2 = ( 47 28 ( 57 113 ) ) 2 + ( 47 28 ( 57 + 113 ) ) 2 = 1927 14 c = \sqrt{a^2 + b^2} = \sqrt{(\frac{47}{28}(57 - \sqrt{113}))^2 + (\frac{47}{28}(57 + \sqrt{113}))^2} = \cfrac{1927}{14}

r 1 = s c = 329 2 1927 14 = 188 7 r_1 = s - c = \cfrac{329}{2} - \cfrac{1927}{14} = \cfrac{188}{7}

r 2 = s b = 329 2 47 28 ( 57 + 113 ) = 47 28 ( 41 113 ) r_2 = s - b = \cfrac{329}{2} - \cfrac{47}{28}(57 + \sqrt{113}) = \cfrac{47}{28}(41 - \sqrt{113})

r 3 = s a = 329 2 47 28 ( 57 113 ) = 47 28 ( 41 + 113 ) r_3 = s - a = \cfrac{329}{2} - \cfrac{47}{28}(57 - \sqrt{113}) = \cfrac{47}{28}(41 + \sqrt{113})

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...