m , x , y , z m,x,y,z

Logic Level 2

1 , 6 , 18 , 40 , 75 , m , x , y , z , 550 \large 1, 6, 18, 40, 75, {\color{#3D99F6}{m}}, {\color{#D61F06}{x}}, {\color{#20A900}{y}}, {\color{#624F41}{z}}, 550~{\dots}

c a n y o u s o l v e i t ? \color{#FFFFFF}{can you solve it?}

Find m + x + y + z \color{#3D99F6}{m}{\color{#333333}{+}}{\color{#D61F06}{x}}{\color{#333333}{+}}{\color{#20A900}{y}}{\color{#333333}{+}}{\color{#624F41}{z}} .


The answer is 1015.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Matin Naseri
Aug 2, 2018

0 0 0{\implies}~{\boxed{0}}

0 + 1 1 0+1{\implies}~{\boxed{1}}

1 + 2 + 3 6 1+2+3{\implies}~{\boxed{6}}

3 + 4 + 5 + 6 18 3+4+5+6{\implies}~{\boxed{18}}

6 + 7 + 8 + 9 + 10 40 6+7+8+9+10{\implies}~{\boxed{40}}

10 + 11 + 12 + 13 + 14 + 15 75 10+11+12+13+14+15{\implies}~{\boxed{75}}

15 + 16 + 17 + 18 + 19 + 20 + 21 126 = m 15+16+17+18+19+20+21{\implies}~{\boxed{126}}~={\color{#3D99F6}{m}}

21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 196 = x 21+22+23+24+25+26+27+28{\implies}~{\boxed{196}}~={\color{#D61F06}{x}}

28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36 288 = y 28+29+30+31+32+33+34+35+36{\implies}~{\boxed{288}}~={\color{#20A900}{y}}

36 + 37 + 38 + 39 + 40 + 41 + 42 + 43 + 44 + 45 405 = z 36+37+38+39+40+41+42+43+44+45{\implies}~{\boxed{405}}~={\color{#624F41}{z}}

45 + 46 + 47 + 48 + 49 + 50 + 51 + 52 + 53 + 54 + 55 505 45+46+47+48+49+50+51+52+53+54+55{\implies}~{\boxed{505}}

m + x + y + z 1015 \color{#3D99F6}{m}{\color{#333333}{+}}{\color{#D61F06}{x}}{\color{#333333}{+}}{\color{#20A900}{y}}{\color{#333333}{+}}{\color{#624F41}{z}}{\implies}{\color{#333333}{\boxed{1015}}}

Hence the answer is 1015 \color{#3D99F6}{\boxed{1015}} .

Let the n n th term of the sequence be a n a_n . Consider the following:

n : 1 2 3 4 5 a n : 1 6 18 40 75 a n n : 1 3 6 10 15 \begin{array} {ccrrrrr} n & : & 1 & 2 & 3 & 4 & 5 \\ a_n & : & 1 & 6 & 18 & 40 & 75 \\ \dfrac {a_n}n & : & 1 & 3 & 6 & 10 & 15 \end{array}

We note that a n n = T n \dfrac {a_n}n = T_n , where T n = n ( n + 1 ) 2 T_n = \dfrac {n(n+1)}2 is the triangular number. Then a n = n T n = n 2 ( n + 1 ) 2 a_n = nT_n = \dfrac {n^2(n+1)}2 . Let us check if the formula is correct. a 10 = 1 0 2 ( 10 + 1 ) 2 = 550. a_{10} = \dfrac {10^2(10+1)}2 = 550. The formula is correct. Then we have:

m = a 6 = 6 2 ( 6 + 1 ) 2 = 126 x = a 7 = 7 2 ( 7 + 1 ) 2 = 196 y = a 8 = 8 2 ( 8 + 1 ) 2 = 288 z = a 9 = 9 2 ( 9 + 1 ) 2 = 405 \begin{aligned} m = a_6 & = \frac {6^2(6+1)}2 = 126 \\ x = a_7 & = \frac {7^2(7+1)}2 = 196 \\ y = a_8 & = \frac {8^2(8+1)}2 = 288 \\ z = a_9 & = \frac {9^2(9+1)}2 = 405 \end{aligned}

Therefore, m + x + y + z = 126 + 196 + 288 + 405 = 1015 m+x+y+z = 126+196+288+405 = \boxed{1015} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...