1 , 6 , 1 8 , 4 0 , 7 5 , m , x , y , z , 5 5 0 …
c a n y o u s o l v e i t ?
Find m + x + y + z .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let the n th term of the sequence be a n . Consider the following:
n a n n a n : : : 1 1 1 2 6 3 3 1 8 6 4 4 0 1 0 5 7 5 1 5
We note that n a n = T n , where T n = 2 n ( n + 1 ) is the triangular number. Then a n = n T n = 2 n 2 ( n + 1 ) . Let us check if the formula is correct. a 1 0 = 2 1 0 2 ( 1 0 + 1 ) = 5 5 0 . The formula is correct. Then we have:
m = a 6 x = a 7 y = a 8 z = a 9 = 2 6 2 ( 6 + 1 ) = 1 2 6 = 2 7 2 ( 7 + 1 ) = 1 9 6 = 2 8 2 ( 8 + 1 ) = 2 8 8 = 2 9 2 ( 9 + 1 ) = 4 0 5
Therefore, m + x + y + z = 1 2 6 + 1 9 6 + 2 8 8 + 4 0 5 = 1 0 1 5 .
Problem Loading...
Note Loading...
Set Loading...
0 ⟹ 0
0 + 1 ⟹ 1
1 + 2 + 3 ⟹ 6
3 + 4 + 5 + 6 ⟹ 1 8
6 + 7 + 8 + 9 + 1 0 ⟹ 4 0
1 0 + 1 1 + 1 2 + 1 3 + 1 4 + 1 5 ⟹ 7 5
1 5 + 1 6 + 1 7 + 1 8 + 1 9 + 2 0 + 2 1 ⟹ 1 2 6 = m
2 1 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 + 2 8 ⟹ 1 9 6 = x
2 8 + 2 9 + 3 0 + 3 1 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 ⟹ 2 8 8 = y
3 6 + 3 7 + 3 8 + 3 9 + 4 0 + 4 1 + 4 2 + 4 3 + 4 4 + 4 5 ⟹ 4 0 5 = z
4 5 + 4 6 + 4 7 + 4 8 + 4 9 + 5 0 + 5 1 + 5 2 + 5 3 + 5 4 + 5 5 ⟹ 5 0 5