My 100 followers problem!

Algebra Level 3

If a + b + c = 1 a+b+c=1 and 1 a + 1 b + 1 c = 3 \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3 , where a a , b b and c c are non-zero reals , then find ( a + b ) a b + ( b + c ) b c + ( c + a ) c a (a+b)ab+(b+c)bc+(c+a)ca .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Algebraic Identities

It is given that:

1 a + 1 b + 1 c = 3 a b + b c + c a a b c = 3 a b + b c + c a = 3 a b c \begin{aligned} \frac 1a + \frac 1b + \frac 1c = 3 \implies \frac {ab+bc+ca}{abc} = 3 \implies \color{#3D99F6}{ab+bc+ca = 3abc} \end{aligned}

Now, we have:

( a + b ) a b + ( b + c ) b c + ( c + a ) c a = ( a + b + c ) a b + ( a + b + c ) b c + ( c + b + a ) c a 3 a b c = ( a + b + c ) ( a b + b c + c a ) 3 a b c Note that a + b + c = 1 = a b + b c + c a 3 a b c Note that a b + b c + c a = 3 a b c = 0 (a+b)ab + (b+c)bc + (c+a)ca \\ = (a+b+\color{#3D99F6}{c})ab + (\color{#3D99F6}{a}+b+c)bc + (c+\color{#3D99F6}{b}+a)ca - \color{#3D99F6}{3abc} \\ = (\color{#3D99F6}{a+b+c})(ab+bc+ca)-3abc \quad \quad \small \color{#3D99F6}{\text{Note that }a+b+c = 1} \\ = \color{#3D99F6}{ab+bc+ca-3abc} \quad \quad \small \color{#3D99F6}{\text{Note that }ab+bc+ca = 3abc} \\ = \boxed{0}

Instead of adding a term to each pf the brackets, we could alternatively substitute ( b + c ) (b+c) with ( 1 a ) (1-a) , etc. Great solution. +1

Sharky Kesa - 4 years, 11 months ago

Log in to reply

good observation...+1

Ayush G Rai - 4 years, 11 months ago

good approach to the problem..+1

Ayush G Rai - 4 years, 11 months ago

Just one thing.... Your solutions are not scrollable at all on mobile.and that's why many people (including me) are not able to see the full line at once on mobile... So I request you to either use \[ \[ \) or give line breaks at small intervals..... Thanks.

Rishabh Jain - 4 years, 11 months ago

Log in to reply

Thanks for the feedback. I have redone the solution. The problem came from {align}. \ [ \ ] will make the solution very long.

Chew-Seong Cheong - 4 years, 11 months ago
Arsh Kohli
Jul 3, 2016

(1/a)+(1/b)+(1/c)=3

(ab+bc+ca)/abc=3

ab+bc+ca=3abc ---------Eq. 1

We have to find (a+b)(ab)+(b+c)(bc)+(c+a)(ac)

Multiplying and dividing by abc, we get

abc((a+b)/c) + (b+c)/a + (c+a)/b)

From a+b+c=1...

a+b=1-c

b+c=1-a

c+a=1-b

So abc((a+b)/c) + (b+c)/a + (c+a)/b)=

abc((1-c)/c) + (1-a)/a + (1-b)/b)=

abc( 1/a) + (1/b) + (1/c) - 3) =

((abc(ab+bc+ca))/abc) -3abc=

ab+bc+ca-3abc

From Eq. 1 ,3abc = ab+bc+ca

So our answer is (ab+bc+ca) - (ab+bc+ca) = 0

(Sorry for not using latex, I'm still learning latex, plus I'm posting this using my phone).

your solution is perfect..+1 try learning latex

Ayush G Rai - 4 years, 11 months ago

Log in to reply

Thanks! :-)

Arsh Kohli - 4 years, 11 months ago

Nice same solution +1 :)

Novril Razenda - 4 years, 11 months ago
Manuel Kahayon
Jul 12, 2016

Yey, new solution

a + b + c = 1 a + b = 1 c a+b+c = 1 \implies \color{#D61F06}{a+b} = \color{#3D99F6}{1-c} , b + c = 1 a \color{#D61F06}{b+c} = \color{#3D99F6}{1-a} , a + c = 1 b \color{#D61F06}{a+c} = \color{#3D99F6}{1-b}

( a + b ) ( a b ) + ( b + c ) b c + ( a + c ) a c = ( 1 c ) a b + ( 1 a ) b c + ( 1 b ) a c = a b a b c + b c a b c + c a a b c = a b + b c + c a 3 a b c (\color{#D61F06}{a+b})(ab) + (\color{#D61F06}{b+c} )bc + (\color{#D61F06}{a+c})ac = (\color{#3D99F6}{1-c})ab + (\color{#3D99F6}{1-a} )bc + (\color{#3D99F6}{1-b})ac = ab - abc + bc - abc + ca - abc = \color{#BA33D6} {ab+bc+ca - 3abc}

Now, since 1 a + 1 b + 1 c = 3 \frac{1}{a} + \frac{1}{b} + \frac{1}{c}= 3 , multiplying both sides by a b c abc gives us

a b c ( 1 a + 1 b + 1 c ) = 3 a b c abc(\frac{1}{a} + \frac{1}{b} + \frac{1}{c})= 3abc

a b c a + a b c b + a b c c = 3 a b c \frac{abc}{a} + \frac{abc}{b} + \frac{abc}{c} = 3abc

a b + b c + c a = 3 a b c a b + b c + a c 3 a b c = 0 ab + bc + ca = 3abc \implies \color{#20A900}{ab+bc+ac-3abc} = 0

Therefore, our answer is 0 \boxed{0} .

I f y o u r e a d t h i s , c o n g r a t u l a t i o n s ! E i t h e r y o u t u r n e d o f f L a T e X o r h a p p e n e d t o p u t y o u r c u r s o r o v e r i t \color{#FFFFFF}{If you read this, congratulations! Either you turned off LaTeX or happened to put your cursor over it} .

good one..+1

Ayush G Rai - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...