Tricky one

Algebra Level 3

What is the least value of n n , such that 2 n { 2 }^{ n } contains exactly one million digits?


The answer is 3321924.773.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

( n × log 2 ) + 1 = 1000000 (n\times \log { 2) } +1=1000000

( n × log 2 ) = 999999 (n\times \log { 2) } =999999

n = 999999 log 2 3321924.773 n=\frac { 999999 }{ \log { 2 } } \approx \boxed { 3321924.773 }

J Joseph
Nov 1, 2016

2 n 1 0 1000000 2^{n} \geq 10^{1000000}

l o g 2 ( 2 n ) l o g 2 ( 1 0 1 0 6 ) log_2 ({2^n}) \geq log_2 (10^{10^{6}})

n l o g 2 ( [ 2 1 0 6 ] [ 5 1 0 6 ] ) n \geq log_2 ([2^{10^{6}}][5^{10^{6}}])

n l o g 2 ( 2 1 0 6 ) + l o g 2 ( 5 1 0 6 ) n \geq log_2(2^{10^{6}}) + log_2(5^{10^{6}})

n 1 0 6 + 1 0 6 l o g 2 ( 5 ) n \geq 10^{6} + 10^{6}log_2(5)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...