My 500 followers problem!

Algebra Level 5

P ( x ) = 500 x 499 + 495 x 498 + 490 x 497 + 485 x 496 1990 x 1995 P(x)=500x^{499}+495x^{498}+490x^{497}+485x^{496} \ldots -1990x-1995

Consider the 499th degree polynomial above.

If P ( 2 ) P(2) can be written as a + b × c d a+b \times c^d where a , b , c , d a,b,c,d are positive integers and c c is not a perfect k th k^{\text{th}} power, find the smallest positive integral value of f f satisfying a + b + c + d f ( m o d 500 ) a + b + c + d \equiv f \pmod{500} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Satyajit Mohanty
Jul 16, 2015

We have P ( 2 ) = S = 500 ( 2 499 ) + 495 ( 2 498 ) + 490 ( 2 497 ) + 1990 ( 2 1 ) 1995 P(2) = S = 500(2^{499}) + 495(2^{498}) + 490(2^{497}) + \ldots - 1990(2^1) - 1995 : E q . 1 \boxed{Eq.1}

Multiplying 2 by Eq.1 in both the Left hand side, and well as Right Hand Side, we obtain:

=> 2 S = 500 ( 2 500 ) + 495 ( 2 499 ) + 490 ( 2 498 ) + 1990 ( 2 2 ) 1995 ( 2 1 ) 2S = 500(2^{500}) + 495(2^{499}) + 490(2^{498}) + \ldots - 1990(2^2) - 1995(2^1) : E q . 2 \boxed{Eq.2}

Subtract E q . 2 \boxed{Eq.2} from E q . 1 \boxed{Eq.1} to obtain:

=> S = 500 ( 2 500 ) 5 ( 2 499 ) 5 ( 2 498 ) 5 ( 2 497 ) 5 ( 2 1 ) + 1995 S = 500(2^{500}) - 5(2^{499}) - 5(2^{498}) - 5(2^{497}) - \ldots - 5(2^1) + 1995

=> S = 500 ( 2 500 ) ( 5 ) ( 2 ) [ 2 498 + 2 497 + 2 496 + + 2 1 + 1 ] + 1995 S = 500(2^{500}) - (5)(2)[2^{498} + 2^{497} + 2^{496} + \ldots + 2^1 + 1] + 1995

=> S = 500 ( 2 500 ) ( 5 ) ( 2 ) [ 2 499 1 ] + 1995 S = 500(2^{500}) - (5)(2)[2^{499} - 1] + 1995

=> S = 500 ( 2 500 ) 5 ( 2 500 ) + ( 5 ) ( 2 ) + 1995 S = 500(2^{500}) - 5(2^{500}) + (5)(2) + 1995

=> S = 2005 + 495 ( 2 500 ) S = 2005 + 495(2^{500})

=> Therefore we have a = 2005 ; b = 495 ; c = 2 ; d = 500 ; e = 3002 a=2005; b=495; c=2; d=500; e=3002 ; and f = 2 f=\boxed{2}

Nihar Mahajan
Mar 31, 2015

This is simply an arithmetico-geometric progression , with

  • First term of A P = a 1 = 1995 AP = a_1 = -1995 , Common difference = d = 5 =d=5 and 500th term = a n = 500 =a_n=500

  • First term of G P = b 1 = 1 GP = b_1 = 1 , Common ratio = r = x = 2 =r=x=2 and 500th term = 2 499 =2^{499}

Sum of n terms of such progression is given by

a 1 b 1 1 r + d b 1 r ( 1 r n 1 ) ( 1 r ) 2 a n b n r 1 r \dfrac{a_1b_1}{1-r}+\dfrac{db_1r(1-r^{n-1})}{(1-r)^2}-\dfrac{a_nb_nr}{1-r}

Substituting the values , = ( 1995 ) ( 1 ) 1 ( 2 ) + ( 5 ) ( 1 ) ( 2 ) ( 1 2 500 1 ) ( 1 2 ) 2 ( 500 ) ( 2 499 ) ( 2 ) 1 2 = \dfrac{(-1995)(1)}{1-(2)} + \dfrac{(5)(1)(2)(1-2^{500-1})}{(1-2)^2}-\dfrac{(500)(2^{499})(2)}{1-2}

= 1995 1 + ( 5 ) ( 2 ) ( 1 2 499 ) 1 ( 500 ) ( 2 500 ) 1 = \dfrac{-1995}{-1} + \dfrac{(5)(2)(1-2^{499})}{1}-\dfrac{(500)(2^{500})}{-1}

= 1995 + 10 + 500 ( 2 500 ) 5 ( 2 500 ) =1995 + 10 + 500(2^{500})-5(2^{500})

= 2005 + 495 ( 2 500 ) =2005+ 495(2^{500})

a + b + c + d = 2005 + 495 + 2 + 500 = 3002 = e a+b+c+d=2005+495+2+500=3002 = e

3002 2 ( m o d 500 ) 3002 \equiv 2 \pmod{500}

f = 2 \Rightarrow f =\huge\boxed{\color{#3D99F6}{2}} (smallest value)

@Azhaghu Roopesh M @Kunal Joshi

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...