My 600 followers problem!

Algebra Level 5

Consider an arithmetic progression < a n > : a 1 , a 2 , a 3 , a 4 , <a_n> : a_1,a_2,a_3,a_4, \ldots such that a 2015 = 600 , a 600 = 2015 a_{2015}= 600,a_{600}=2015

Consider another arithmetic progression < b n > : b 1 , b 2 , b 3 , b 4 , <b_n> : b_1,b_2,b_3,b_4,\ldots such that sum of its first 2015 2015 terms S b , 2015 = 600 S_{b,2015}=600 , and the sum of its first 600 600 terms S b , 600 = 2015 S_{b,600}=2015 .

What is the value of a 1729 + S b , 2615 a_{1729}+S_{b,2615} ?


The answer is -1729.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nihar Mahajan
Apr 8, 2015

Let 2015 = q 600 = p a 1 = a b 1 = b 2015=q \quad 600=p\quad a_1=a \quad b_1=b

a p = a + ( p 1 ) d 1 = q ( 1 ) a_p=a+(p-1)d_1=q …(1)

a q = a + ( q 1 ) d 1 = p ( 2 ) a_q=a+(q-1)d_1=p …(2)

( 2 ) ( 1 ) q p = d 1 ( p 1 q + 1 ) q p = d 1 ( p q ) d 1 = 1 (2)-(1) \Rightarrow q-p = d_1(p-1-q+1) \Rightarrow q-p = d_1(p-q)\Rightarrow d_1=-1

Substitute d 1 = 1 d_1=-1 in 1 1 to get q = a p + 1 p + q = a + 1 ( 3 ) q=a-p+1 \Rightarrow p+q=a+1…(3)

a n = a + ( n 1 ) d 1 = a n + 1 a n = p + q n ( 4 ) a_n=a+(n-1)d_1=a-n+1\Rightarrow a_n=p+q-n…(4)

#

S p = p [ 2 b + ( p 1 ) d 2 ] 2 = 2 b p + p 2 d 2 p d 2 2 = q S q = q [ 2 b + ( q 1 ) d 2 ] 2 = 2 b q + q 2 d 2 q d 2 2 = p S_p=\dfrac{p[2b+(p-1)d_2]}{2}=\dfrac{2bp+p^2d_2-pd_2}{2}=q\\\Rightarrow S_q=\dfrac{q[2b+(q-1)d_2]}{2}=\dfrac{2bq+q^2d_2-qd_2}{2}=p

q p = 2 b p + p 2 d 2 p d 2 2 2 b q + q 2 d 2 q d 2 2 2 ( p q ) = 2 b ( p q ) + d 2 ( p + q ) ( p q ) d ( p q ) 2 b + d 2 ( p + q ) d 2 = 2 2 b + d 2 ( p + q 1 ) = 2 ( p + q ) [ 2 b + d 2 ( p + q 1 ) ] 2 = 2 ( ( p + q ) 2 ) q-p =\dfrac{2bp+p^2d_2-pd_2}{2}-\dfrac{2bq+q^2d_2-qd_2}{2}\\\Rightarrow-2(p-q)=2b(p-q)+d_2(p+q)(p-q)-d(p-q) \\\Rightarrow2b+d_2(p+q)-d_2=-2\\\Rightarrow2b+d_2(p+q-1)=-2\\\Rightarrow\dfrac{(p+q)[2b+d_2(p+q-1)]}{2}=-2\left(\dfrac{(p+q)}{2}\right) S p + q = ( p + q ) ( 5 ) \Rightarrow S_{p+q}=-(p+q)…(5)

Adding ( 4 ) , ( 5 ) (4),(5) , we get a n + S p + q = n \large a_n+S_{p+q}=-n

a 1729 + S 2615 = 1729 \huge\boxed{a_{1729}+S_{2615}=\color{#3D99F6}{-1729}}

Making such substitutions makes the problem easier. Though I just used the numbers. Great question anyways!

Sualeh Asif - 6 years, 2 months ago

Log in to reply

Thanks !! ¨ \ddot\smile

Nihar Mahajan - 6 years, 2 months ago

@Azhaghu Roopesh M

Nihar Mahajan - 6 years, 2 months ago

Since AP is linear,

a 1729 a 600 1729 600 = a 2015 a 600 2015 600 a 1729 2015 1729 600 = 600 2015 2015 600 a 1729 2015 1129 = 1 a 1729 = 1129 + 2015 = 886 \dfrac {a_{1729}-a_{600}}{1729-600} = \dfrac {a_{2015}-a_{600}}{2015-600} \quad \Rightarrow \dfrac {a_{1729}-2015}{1729-600} = \dfrac {600-2015}{2015-600} \\ \Rightarrow \dfrac {a_{1729}-2015}{1129} = -1 \quad \Rightarrow a_{1729} = -1129 + 2015 = 886

We know that:

S n = n 2 [ 2 a + ( n 1 ) d ] = d 2 n 2 + ( a d 2 ) n S_n = \dfrac {n}{2} [2a+(n-1)d] = \dfrac {d}{2} n^2+ \left(a-\dfrac{d}{2} \right)n

Therefore,

{ S 2015 = 201 5 2 ˙ d 2 2015 ( a d 2 ) = 600 . . . ( 1 ) S 600 = 60 0 2 ˙ d 2 600 ( a d 2 ) = 2015 . . . ( 2 ) S 2615 = 261 5 2 ˙ d 2 2615 ( a d 2 ) . . . ( 3 ) \begin{cases} S_{2015} & = 2015^2\dot{}\dfrac {d}{2} & - 2015\left(a - \dfrac {d}{2} \right) & = 600 &...(1) \\ S_{600} & = 600^2\dot{}\dfrac {d}{2} & - 600\left(a - \dfrac {d}{2} \right) & = 2015 &...(2) \\ S_{2615} & = 2615^2\dot{}\dfrac {d}{2} & - 2615\left(a - \dfrac {d}{2} \right) & &...(3) \end{cases}

{ E q . 3 E q . 1 E q . 2 : S 2615 = 1209000 d + 2615 . . . ( 4 ) 600 ˙ E q . 1 2015 ˙ E q . 2 : 1710735000 d = 3700225 1209000 d = 5230 . . . ( 5 ) \begin{cases} Eq.3-Eq.1-Eq.2: & S_{2615} = 1209000d + 2615 &...(4) \\ 600\dot{}Eq.1-2015\dot{}Eq.2: & 1710735000d = -3700225 & \\ & \Rightarrow 1209000d = -5230 &...(5) \end{cases}

Substituting E q . 5 Eq.5 into E q . 4 : S 2615 = 5236 + 2615 = 2615 Eq.4: \space S_{2615} = -5236 + 2615 = \boxed{-2615} .

Ohk.! Now I understood my mistake! I got the First Part, But Was trapped in the second Thanks For the Solution, Sir! :D

Mehul Arora - 6 years, 2 months ago

Log in to reply

It would have been better if you would have used variables like @Nihar Mahajan 's solution... Thanks!

Nitesh Chaudhary - 6 years, 2 months ago

Log in to reply

I have further simplified the solution. Check it out above.

Chew-Seong Cheong - 6 years, 2 months ago

Same for me.

Rama Devi - 6 years ago

Lol i made 886+2615 xD

Younes Abid - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...