Consider an arithmetic progression < a n > : a 1 , a 2 , a 3 , a 4 , … such that a 2 0 1 5 = 6 0 0 , a 6 0 0 = 2 0 1 5
Consider another arithmetic progression < b n > : b 1 , b 2 , b 3 , b 4 , … such that sum of its first 2 0 1 5 terms S b , 2 0 1 5 = 6 0 0 , and the sum of its first 6 0 0 terms S b , 6 0 0 = 2 0 1 5 .
What is the value of a 1 7 2 9 + S b , 2 6 1 5 ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Making such substitutions makes the problem easier. Though I just used the numbers. Great question anyways!
Since AP is linear,
1 7 2 9 − 6 0 0 a 1 7 2 9 − a 6 0 0 = 2 0 1 5 − 6 0 0 a 2 0 1 5 − a 6 0 0 ⇒ 1 7 2 9 − 6 0 0 a 1 7 2 9 − 2 0 1 5 = 2 0 1 5 − 6 0 0 6 0 0 − 2 0 1 5 ⇒ 1 1 2 9 a 1 7 2 9 − 2 0 1 5 = − 1 ⇒ a 1 7 2 9 = − 1 1 2 9 + 2 0 1 5 = 8 8 6
We know that:
S n = 2 n [ 2 a + ( n − 1 ) d ] = 2 d n 2 + ( a − 2 d ) n
Therefore,
⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ S 2 0 1 5 S 6 0 0 S 2 6 1 5 = 2 0 1 5 2 ˙ 2 d = 6 0 0 2 ˙ 2 d = 2 6 1 5 2 ˙ 2 d − 2 0 1 5 ( a − 2 d ) − 6 0 0 ( a − 2 d ) − 2 6 1 5 ( a − 2 d ) = 6 0 0 = 2 0 1 5 . . . ( 1 ) . . . ( 2 ) . . . ( 3 )
⎩ ⎪ ⎨ ⎪ ⎧ E q . 3 − E q . 1 − E q . 2 : 6 0 0 ˙ E q . 1 − 2 0 1 5 ˙ E q . 2 : S 2 6 1 5 = 1 2 0 9 0 0 0 d + 2 6 1 5 1 7 1 0 7 3 5 0 0 0 d = − 3 7 0 0 2 2 5 ⇒ 1 2 0 9 0 0 0 d = − 5 2 3 0 . . . ( 4 ) . . . ( 5 )
Substituting E q . 5 into E q . 4 : S 2 6 1 5 = − 5 2 3 6 + 2 6 1 5 = − 2 6 1 5 .
Ohk.! Now I understood my mistake! I got the First Part, But Was trapped in the second Thanks For the Solution, Sir! :D
Log in to reply
It would have been better if you would have used variables like @Nihar Mahajan 's solution... Thanks!
Log in to reply
I have further simplified the solution. Check it out above.
Same for me.
Lol i made 886+2615 xD
Problem Loading...
Note Loading...
Set Loading...
Let 2 0 1 5 = q 6 0 0 = p a 1 = a b 1 = b
a p = a + ( p − 1 ) d 1 = q … ( 1 )
a q = a + ( q − 1 ) d 1 = p … ( 2 )
( 2 ) − ( 1 ) ⇒ q − p = d 1 ( p − 1 − q + 1 ) ⇒ q − p = d 1 ( p − q ) ⇒ d 1 = − 1
Substitute d 1 = − 1 in 1 to get q = a − p + 1 ⇒ p + q = a + 1 … ( 3 )
a n = a + ( n − 1 ) d 1 = a − n + 1 ⇒ a n = p + q − n … ( 4 )
#
S p = 2 p [ 2 b + ( p − 1 ) d 2 ] = 2 2 b p + p 2 d 2 − p d 2 = q ⇒ S q = 2 q [ 2 b + ( q − 1 ) d 2 ] = 2 2 b q + q 2 d 2 − q d 2 = p
q − p = 2 2 b p + p 2 d 2 − p d 2 − 2 2 b q + q 2 d 2 − q d 2 ⇒ − 2 ( p − q ) = 2 b ( p − q ) + d 2 ( p + q ) ( p − q ) − d ( p − q ) ⇒ 2 b + d 2 ( p + q ) − d 2 = − 2 ⇒ 2 b + d 2 ( p + q − 1 ) = − 2 ⇒ 2 ( p + q ) [ 2 b + d 2 ( p + q − 1 ) ] = − 2 ( 2 ( p + q ) ) ⇒ S p + q = − ( p + q ) … ( 5 )
Adding ( 4 ) , ( 5 ) , we get a n + S p + q = − n
a 1 7 2 9 + S 2 6 1 5 = − 1 7 2 9