My Beta Functions - Part 1

Calculus Level 4

0 π / 2 cos 2 m θ sin 2 n θ d θ = ? \large \displaystyle \int_{0}^{{\pi} / {2}} \cos^{2m}\theta \sin^{2n}\theta \ d\theta = \, ?

1 2 β ( m + 1 2 , n + 1 2 ) \frac{1}{2} \beta(m + \frac{1}{2},n + \frac{1}{2} ) None of these options β ( 2 m + 1 , 2 n + 1 ) \beta(2m+1,2n+1) 2 β ( 2 m , 2 n ) 2 \beta(2m,2n)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let I = 0 π / 2 cos 2 m θ sin 2 n θ d θ \large \displaystyle \int_{0}^{{\pi} / {2}} \cos^{2m}\theta \sin^{2n}\theta d\theta T a k e s i n θ = t Take sin\theta = t S o , c o s θ d θ = d t So, cos\theta d\theta = dt

Limits change as 0 to 1.

I = 0 1 t 2 n ( 1 t 2 ) 2 m 1 2 d t \large \displaystyle \int_{0}^{1} t^{2n} (1 - t^{2})^\frac{2m-1}{2} dt

Again Take t^{2} = k ,

2 t d t = d k 2t dt = dk

d t = d k 2 ( k ) dt = \frac{dk}{2\sqrt(k)}

I = 1 2 0 1 k n ( k ) ( 1 k ) 2 m 1 2 d k \frac{1}{2} \large \displaystyle \int_{0}^{1} \frac{k^{n}}{\sqrt(k)} (1 - k)^\frac{2m-1}{2} dk = 1 2 0 1 k n + 1 2 1 ( 1 k ) m + 1 2 1 d k \frac{1}{2} \large \displaystyle \int_{0}^{1} k^{n + \frac{1}{2} - 1} (1 - k)^{m + \frac{1}{2} - 1} dk

Here we see from the definition of Beta function that , 0 1 x m 1 ( 1 x ) n 1 d t = β ( m , n ) \large \displaystyle \int_{0}^{1} x^{m - 1} (1 - x)^{n-1} dt = β(m,n) Comparing I with the above form we derive, I = 1 2 β ( m + 1 2 , n + 1 2 ) \frac{1}{2}β(m + \frac{1}{2},n + \frac{1}{2})

Moderator note:

Simple standard approach.

The first 2 steps could be combined by taking the substitution sin 2 θ = k \sin^2 \theta = k , though that could introduce complications in the change of variables if one is not careful.

Just compare with the standard definition of b e t a beta functions i.e. β ( x , y ) = 0 1 t x 1 ( 1 t ) y 1 d t \beta (x,y)=\int _{ 0 }^{ 1 }{ { t }^{ x-1 } } { (1-t) }^{ y-1 }dt

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...