My Eighth Problem

Algebra Level 3

2 cos ( i ln 4 ) + 2 sin 2 ( i ln 2 ) + i sin ( i ln 4 ) = ? 2 \cos ( i \ln 4 )+2 \sin^{2} ( i \ln 2 ) + i \sin( i \ln 4 ) = \text{?}

Details and Assumptions :

i = 1 i=\sqrt{-1}

Image Credit: Wikimedia Complex Conjugate


The answer is 1.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 12, 2015

Similar to Daniel Ellesar 's solution but maybe simpler. I just used the identity of cos 2 θ = 1 2 sin 2 θ \cos{2\theta} = 1 - 2 \sin^2{\theta} .

2 cos ( i ln 4 ) + 2 sin 2 ( i ln 2 ) + i sin ( i ln 4 ) 2\cos{(i\ln{4})}+2\sin^2{(i\ln{2})}+i\sin{(i\ln{4})}

= 2 cos ( i ln 4 ) + ( 1 cos ( i ln 4 ) ) + i sin ( i ln 4 ) =2\cos{(i\ln{4})}+(1-\cos{(i\ln{4})})+i\sin{(i\ln{4})}

= 1 + cos ( i ln 4 ) + i sin ( i ln 4 ) =1+\cos{(i\ln{4})}+i\sin{(i\ln{4})}

= 1 + e i ( i ln 4 ) = 1 + e ln 4 = 1 + 1 4 = 1.25 = 1 + e^{i(i\ln{4})} = 1 + e^{-\ln{4}} = 1 + \frac {1}{4} = \boxed{1.25}

The problem should be more than 10 points so that more will try it.

cos 2 θ = 1 2 sin 2 θ \cos{2\theta} = 1 - 2\sin^2{\theta} \ \ \ \ i think......

Ahmed Arup Shihab - 6 years, 3 months ago

Log in to reply

Yes, thanks.

Chew-Seong Cheong - 6 years, 3 months ago
Daniel Ellesar
Mar 10, 2015

First use the logarithmic identity that l o g 4 = 2 l o g 2 log4=2log2 .

Then use the double angle formulae.

The problem becomes 2 c o s 2 ( i l o g 2 ) 2 s i n 2 ( i l o g 2 ) + 2 s i n 2 ( i l o g 2 ) + 2 i s i n ( i l o g 2 ) c o s ( i l o g 2 ) 2cos^{2}(ilog2)-2sin^{2}(ilog2)+2sin^{2}(ilog2)+2isin(ilog2)cos(ilog2)

Simplify and factorise by taking out c o s ( i l o g 2 ) cos(ilog2)

= c o s ( i l o g 2 ) × 2 ( c o s ( i l o g 2 ) + i s i n ( i l o g 2 ) ) ={cos(ilog2)}\times{2(cos(ilog2)+isin(ilog2))}

Now use the trigonometric identities c o s ( x ) = e 2 i x + 1 2 e i x cos(x)=\frac{e^{2ix}+1}{2e^{ix}}

and c o s ( x ) + i s i n ( x ) = e i x cos(x)+isin(x)=e^{ix} .

The problem becomes e 2 i 2 l o g 2 + 1 2 e i 2 l o g 2 × 2 e i 2 l o g 2 {\frac{e^{2i^{2}log2}+1}{2e^{i^{2}log2}}}\times{2e^{i^{2}log2}}

Since i 2 = 1 i^{2}=-1

The problem becomes e 2 l o g 2 + 1 e^{-2log2}+1

= e l o g ( 1 4 ) + 1 =e^{log(\frac{1}{4})}+1

= 1 4 + 1 = 1.25 =\frac{1}{4}+1=1.25

Nice problem. I used the identities cos ( i x ) = cosh ( x ) \cos(ix) = \cosh(x) and sin ( i x ) = i sinh ( x ) \sin(ix) = i*\sinh(x) to solve this, but your solution is more interesting. :)

Brian Charlesworth - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...