My Favorite Number is 1153

If the maximum power of 5 in n ! n! is k n k_n (For example k 10 = 2 k_{10}=2 since 10 ! = 2 8 × 3 4 × 5 2 × 7 10!=2^8×3^4×5^2×7 ), find the value of n = 1 1153 [ k n × ( 1 ) n + 1 ] \displaystyle \sum_{n=1}^{1153}{[k_n×(-1)^{n+1}]}


This is one part of 1+1 is not = to 3 .


The answer is 144.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kenneth Tan
Oct 3, 2015

First of all, the maximum power of a prime number p p in n ! n! is given by h = i = 1 n p i h=\displaystyle\sum_{i=1}^{\infty}{\left \lfloor \frac{n}{p^i}\right \rfloor} (take note that if p i > n p^i>n , then n p i = 0 \left \lfloor \frac{n}{p^i}\right \rfloor=0 , so this equation does have a finite value).

To show this, see that n ! = n × ( n 1 ) × ( n 2 ) × × 2 × 1 n!=n\times(n-1)\times(n-2)\times\ldots \times 2\times 1 , completely factorize these n n numbers so that every number is expressed as the product of their prime factors, then h h is actually the sum of exponents of all the p p 's.

If the number of p p that has the exponent a a is h a h_a , then h = h 1 + 2 h 2 + 3 h 3 + 4 h 4 + = N 1 + N 2 + N 3 + N 4 + \begin{aligned} h&=h_1+2h_2+3h_3+4h_4+\ldots\\&=N_1+N_2+N_3+N_4+\ldots \end{aligned} where N j = i = j h i N_j=\displaystyle \sum_{i=j}^{\infty}{h_i} shows how many numbers from 1 to n n that are divisible by p j p^j , which is given by n p j \left \lfloor \frac{n}{p^j}\right \rfloor .

Hence h = i = 1 N i = i = 1 n p i h=\displaystyle \sum_{i=1}^{\infty}{N_i}=\displaystyle\sum_{i=1}^{\infty}{\left \lfloor \frac{n}{p^i}\right \rfloor}

Now, n = 1 1153 [ k n × ( 1 ) n + 1 ] = n = 1 1153 [ ( 1 ) n + 1 ( n 5 + n 5 2 + n 5 3 + n 5 4 ) ] \displaystyle \sum_{n=1}^{1153}{[k_n\times (-1)^{n+1}]}=\displaystyle \sum_{n=1}^{1153}{\bigg[(-1)^{n+1}\Big(\Big\lfloor \frac{n}{5}\Big\rfloor+\Big\lfloor \frac{n}{5^2}\Big\rfloor+\Big\lfloor \frac{n}{5^3}\Big\rfloor+\Big\lfloor \frac{n}{5^4}\Big\rfloor \Big)\bigg]}


Consider n = 1 1153 [ ( 1 ) n + 1 n 5 ] \displaystyle\sum_{n=1}^{1153}{\Big[(-1)^{n+1}\left\lfloor\frac{n}{5}\right\rfloor}\Big] , n = 1 1153 [ ( 1 ) n + 1 n 5 ] = 0 0 + 0 0 + 1 1 + 5 terms 2 + 2 5 terms + + 229 229 + 5 terms 1145 terms 230 + 230 230 + 230 = 1 2 + 3 4 + 5 228 + 229 114 terms = 1 + 114 = 115 \begin{aligned} &\displaystyle\sum_{n=1}^{1153}{\Big[(-1)^{n+1}\left\lfloor\frac{n}{5}\right\rfloor}\Big]\\&=0-0+0-0\overbrace{\overbrace{+1-1+\ldots}^{5\text{ terms}}\overbrace{-2+2-\ldots}^{5\text{ terms}}+\ldots\overbrace{+229-229+\ldots}^{5\text{ terms}}}^{1145\text{ terms}}-230+230-230+230\\&=1\overbrace{-2+3-4+5-\ldots-228+229}^{114\text{ terms}}\\&=1+114\\&=115\end{aligned}


Consider n = 1 1153 [ ( 1 ) n + 1 n 5 2 ] \displaystyle\sum_{n=1}^{1153}{\Big[(-1)^{n+1}\left\lfloor\frac{n}{5^2}\right\rfloor}\Big] , n = 1 1153 [ ( 1 ) n + 1 n 5 2 ] = 24 × 0 + 1 1 + 25 terms 2 + 2 25 terms + 45 + 45 25 terms 1125 terms + 46 46 + 46 46 = 1 2 + 3 4 + 5 44 + 45 22 terms = 1 + 22 = 23 \begin{aligned} &\displaystyle\sum_{n=1}^{1153}{\Big[(-1)^{n+1}\left\lfloor\frac{n}{5^2}\right\rfloor}\Big]\\&=24\times0\overbrace{\overbrace{+1-1+\ldots}^{25\text{ terms}}\overbrace{-2+2-\ldots}^{25\text{ terms}}+\ldots\overbrace{-45+45-\ldots}^{25\text{ terms}}}^{1125\text{ terms}}+46-46+46-46\\&=1\overbrace{-2+3-4+5-\ldots-44+45}^{22\text{ terms}}\\&=1+22\\&=23\end{aligned}


Consider n = 1 1153 [ ( 1 ) n + 1 n 5 3 ] \displaystyle\sum_{n=1}^{1153}{\Big[(-1)^{n+1}\left\lfloor\frac{n}{5^3}\right\rfloor}\Big] , n = 1 1153 [ ( 1 ) n + 1 n 5 3 ] = 124 × 0 + 1 1 + 125 terms 2 + 2 125 terms + 8 + 8 125 terms 1000 terms + 9 9 + + 9 29 terms = 1 2 + 3 4 + 5 6 + 7 8 + 9 = 5 \begin{aligned} &\displaystyle\sum_{n=1}^{1153}{\Big[(-1)^{n+1}\left\lfloor\frac{n}{5^3}\right\rfloor}\Big]\\&=124\times0\overbrace{\overbrace{+1-1+\ldots}^{125\text{ terms}}\overbrace{-2+2-\ldots}^{125\text{ terms}}+\ldots\overbrace{-8+8-\ldots}^{125\text{ terms}}}^{1000\text{ terms}}\overbrace{+9-9+\ldots+9}^{29\text{ terms}}\\&=1-2+3-4+5-6+7-8+9\\&=5\end{aligned}


Consider n = 1 1153 [ ( 1 ) n + 1 n 5 4 ] \displaystyle\sum_{n=1}^{1153}{\Big[(-1)^{n+1}\left\lfloor\frac{n}{5^4}\right\rfloor}\Big] , n = 1 1153 [ ( 1 ) n + 1 n 5 4 ] = 624 × 0 + 1 1 + + 1 529 terms = 1 \begin{aligned} &\displaystyle\sum_{n=1}^{1153}{\Big[(-1)^{n+1}\left\lfloor\frac{n}{5^4}\right\rfloor}\Big]\\&=624\times0\overbrace{+1-1+\ldots+1}^{529\text{ terms}}\\&=1\end{aligned}


Therefore, n = 1 1153 [ k n × ( 1 ) n + 1 ] = n = 1 1153 [ ( 1 ) n + 1 ( n 5 + n 5 2 + n 5 3 + n 5 4 ) ] = 115 + 23 + 5 + 1 = 144 \begin{aligned} \displaystyle \sum_{n=1}^{1153}{[k_n\times (-1)^{n+1}]}&=\displaystyle \sum_{n=1}^{1153}{\bigg[(-1)^{n+1}\Big(\Big\lfloor \frac{n}{5}\Big\rfloor+\Big\lfloor \frac{n}{5^2}\Big\rfloor+\Big\lfloor \frac{n}{5^3}\Big\rfloor+\Big\lfloor \frac{n}{5^4}\Big\rfloor \Big)\bigg]}\\&=115+23+5+1\\&=144\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...