My Fifteenth Problem

Calculus Level 5

Let f : [ π 2 , π ] [ 1 2 , 2 ] f: \left [ \dfrac \pi2 , \pi \right ] \mapsto \left [ \dfrac12 , 2\right ] be the bijection f ( θ ) = 1 cos θ 1 + sin θ f(\theta) = \dfrac{1-\cos\theta}{1+\sin\theta} .

And let g : [ 1 2 , 1 2 ] [ 1 2 , 2 ] g : \left [ -\dfrac12 , \dfrac12 \right ]\mapsto \left [ \dfrac12 , 2\right ] be the injection g ( x ) = e arcsin x g(x) = e^{\arcsin x} .

Evaluate 1 / 2 1 / 2 f 1 g ( t ) d t \displaystyle \large \int_{-1/2}^{1/2} f^{-1} \circ g(t) \, dt .

Round your answer to 3 decimal places.


The answer is 2.356.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Daniel Ellesar
Jul 13, 2016

π 2 θ π \frac{\pi}{2} \leq \theta \leq \pi and π 2 ϕ π \frac{\pi}{2} \leq \phi \leq \pi .

a = 1 + s i n ( θ π 2 ) = 1 + s i n ( θ ) 0 c o s ( θ ) 1 = 1 c o s ( θ ) a=1+sin(\theta -\frac{\pi}{2})=1+sin(\theta)*0-cos(\theta)*1=1-cos(\theta) . b = 1 + c o s ( θ π 2 ) = 1 + c o s ( θ ) 0 + s i n ( θ ) 1 = 1 + s i n ( θ ) b=1+cos(\theta -\frac{\pi}{2})=1+cos(\theta)*0+sin(\theta)*1=1+sin(\theta) .

Hence f 1 ( a b ) = θ f^{-1}(\frac{a}{b})=\theta and f 1 ( b a ) = ϕ f^{-1}(\frac{b}{a})=\phi . Also the interior angles of a pentagon sum to 3 π 3\pi . So θ + ϕ + 3 π 2 = 3 π \theta + \phi + \frac{3\pi}{2} = 3\pi . θ + ϕ = 3 π 2 \rightarrow \theta + \phi = \frac{3\pi}{2} .

1 / 2 1 / 2 f 1 g ( t ) d t = 1 2 1 / 2 1 / 2 f 1 g ( t ) + f 1 g ( t ) d t + 1 2 1 / 2 1 / 2 f 1 g ( t ) f 1 g ( t ) d t \int_{-1/2}^{1/2} f^{-1} \circ g(t) \, dt = \frac{1}{2} \int_{-1/2}^{1/2} f^{-1} \circ g(t) + f^{-1} \circ g(-t) \, dt + \frac{1}{2} \int_{-1/2}^{1/2} f^{-1} \circ g(t) - f^{-1} \circ g(-t) \, dt = 1 2 1 / 2 1 / 2 f 1 g ( t ) + f 1 g ( t ) d t + 0 = \frac{1}{2} \int_{-1/2}^{1/2} f^{-1} \circ g(t) + f^{-1} \circ g(-t) \, dt + 0 = 1 2 1 / 2 1 / 2 f 1 ( g ( t ) ) + f 1 ( 1 g ( t ) ) d t = \frac{1}{2} \int_{-1/2}^{1/2} f^{-1} ( g(t) ) + f^{-1} ( \frac{1}{g(t)} ) \, dt

= 1 2 1 / 2 1 / 2 3 π 2 d t = 3 π 4 2.356 = \frac{1}{2} \int_{-1/2}^{1/2} \frac{3\pi}{2} \, dt = \frac{3\pi}{4} \approx 2.356

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...