My first limit problem

Calculus Level 2

lim x ( x 2 + x x ) = ? \large\displaystyle\lim _{ x\rightarrow \infty } \left( { \sqrt { { x }^{ 2 }+x } -x } \right) = \, ?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Harsh Khatri
Feb 16, 2016

lim x x 2 + x x \displaystyle \lim_{x \rightarrow \infty} \sqrt{x^2 + x} - x

lim x x × ( 1 + 1 x 1 ) \displaystyle \Rightarrow \lim_{x \rightarrow \infty} x\times \Big( \sqrt{ 1 + \frac{1}{x}} - 1 \Big)

lim x ( 1 + 1 x 1 ) 1 x ( 0 0 f o r m ) \displaystyle \Rightarrow \lim_{x \rightarrow \infty} \frac{\bigg( \sqrt{1 + \frac{1}{x}} - 1\bigg) }{\frac{1}{x}} \Big(\frac{0}{0} form\Big)

Applying L'Hopital's Rule :

lim x ( 1 x 2 2 1 + 1 x ) 1 x 2 \displaystyle \Rightarrow \lim_{x \rightarrow \infty}\frac{ \bigg( \frac{\frac{-1}{x^2}}{2\sqrt{1 + \frac{1}{x}}} \bigg)}{\frac{-1}{x^2}}

lim x 1 2 1 + 1 x \displaystyle \Rightarrow \lim_{x \rightarrow \infty} \frac{1}{2 \sqrt{1 + \frac{1}{x}}}

1 2 1 + 0 \displaystyle \Rightarrow \frac{1}{2 \sqrt{ 1 + 0}}

1 2 \displaystyle \Rightarrow \boxed{\displaystyle \frac{1}{2}}

You could make the differentiation a little easier by making the substitution t = 1/x and changing the limit to t -> 0

Anindya Mahajan - 1 year ago

1.- lim x ( x 2 + x x ) = lim x ( x 2 + x x ) x 2 + x + x x 2 + x + x = \lim_{x\to\infty} \left(\sqrt{x^2 + x} - x \right) = \lim_{x\to\infty} \left(\sqrt{x^2 + x} - x \right) \cdot \frac{\sqrt{x^2 + x} + x}{\sqrt{x^2 + x} + x} = = lim x x 2 + x x 2 x 2 + x + x = lim x x x 2 + x + x = = \lim_{x\to\infty} \frac{x^2 + x - x^2}{\sqrt{x^2 + x} + x} = \lim_{x\to\infty} \frac{ x }{\sqrt{x^2 + x} + x} = Now, let's divide numerator and denominator by x = lim x 1 1 + 1 x + 1 = 1 2 = \lim_{x\to\infty} \frac{1}{\sqrt{1 + \frac{1}{x}} + 1} = \frac{1}{2}

Akash Omble
Feb 26, 2016

I have an intriguing way of solving this which i kinda discovered. I solved it by A.M.- G.M. inequality. x + ( 1 / 2 ) x ( x + 1 ) x+(1/2) \geq \sqrt{x(x+1)}

As x tends to ∞, x ≈ x+1. Hence we can use the upper limit. Hence, the term reduces to x+(1/2)-x = 1/2. ( I doubt this step too but i leave it to the masters to guide me) This solution makes me wonder how should we deal with infinities O.o but one thing is for sure, x tends to infinity but not infinity ;)

Deepak Kumar
Feb 17, 2016

Rationalise and then take 'x' common in numerator as well as denominator

Yes did the same!

Anik Mandal - 5 years, 3 months ago

Log in to reply

Done with Calculus? Cool!

Mehul Arora - 5 years, 3 months ago
Tempest Storm
Apr 15, 2020

You can show this with binomial expansion for the root: sqrt(x^2+x)=x*sqrt(1+1/x) is approx. x(1+1/2x) as 1/x->0. So, you get x+1/2-x=1/2.

Star Chou
Jul 29, 2018

lim x x 2 + x x = lim x ( x + 1 2 ) 2 1 4 x = lim x ( x + 1 2 ) 2 x = lim x ( x + 1 2 ) x = 1 2 \begin{aligned} \lim_{x \to \infty} \sqrt{x^2+x}-x &= \lim_{x \to \infty} \sqrt{\left (x+\frac{1}{2} \right )^2-\frac{1}{4}}-x \\ &= \lim_{x \to \infty} \sqrt{ \left (x+\frac{1}{2} \right )^2}-x \\ &= \lim_{x \to \infty} \left (x+\frac{1}{2} \right )-x \\ &= \frac{1}{2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...