My First Problem

Let

X = n = 1 1000 n ! n X = \sum_{n=1}^{1000} n! \cdot n

What is the remainder when X X is divided by 1001?


The answer is 1000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Antonio Hugo
Jan 5, 2016

n = 1 1000 n ! n \sum _{ n=1 }^{ 1000 }{ n!n }

Let n = N 1 n=N-1

N = 2 1001 ( N 1 ) ! ( N 1 ) \sum _{ N=2 }^{ 1001 }{ (N-1)!(N-1) }

= N = 2 1001 N ( N 1 ) ! ( N 1 ) ! =\sum _{ N=2 }^{ 1001 }{ N(N-1)!-(N-1)! }

= N = 2 1001 N ! ( N 1 ) ! =\sum _{ N=2 }^{ 1001 }{ N!-(N-1)! }

= ( 2 ! 1 ! ) + ( 3 ! 2 ! ) + . . . . . . . . + ( 1001 ! 1000 ! ) =(2!-1!)+(3!-2!)+........+(1001!-1000!)

= 1001 ! 1 = 1001!-1

X = 1001 ! 1 X=1001!-1

Thus,

X ( m o d 1001 ) = 1001 ! 1 ( m o d 1001 ) 1 ( m o d 1001 ) 1000 ( m o d 1001 ) X(mod\quad 1001)= 1001!-1(mod\quad 1001)\equiv -1(mod\quad 1001)\equiv \boxed{1000(mod\quad 1001)}

I just can watch how u solve this:")

Jessill Jess - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...