My first problem on Brilliant

Calculus Level 5

0 π / 2 ln ( cos ( x ) ) ln ( sin ( x ) ) sin ( 2 x ) d x \large \displaystyle\int_{0}^{\pi/2} \ln ( \cos (x)) \ln( \sin (x) ) \sin (2x) dx .

Evaluate the above integral. If your answer comes in form of a b π c d \dfrac ab - \dfrac{\pi^c}{d} , where gcd ( a , b ) = 1 \gcd (a,b) =1 . Then find a + b + c + d a+b+c+d .


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Since β ( a , b ) = 2 0 π / 2 ( sin x ) 2 a 1 ( cos x ) 2 b 1 d x \displaystyle \beta(a,b)=2\int_0^{\pi/2} (\sin x)^{2a-1}(\cos x)^{2b-1}\; dx , we have by differentiating twice that

0 π / 2 ln ( sin x ) ln ( cos x ) sin ( 2 x ) d x = 1 4 2 a b ( β ( a , b ) ) a = b = 1 \displaystyle \int_0^{\pi/2} \ln(\sin x)\ln(\cos x) \sin(2x)\; dx = \dfrac{1}{4}\dfrac{\partial^2}{\partial a \partial b}\left(\beta(a,b)\right)|_{a=b=1}

It can be proved that 2 a b ( β ( a , b ) ) a = b = 1 = ( ψ ( 1 ) ψ ( 2 ) ) 2 ψ ( 1 ) ( 2 ) = 2 π 2 6 \displaystyle \dfrac{\partial^2}{\partial a \partial b}\left(\beta(a,b)\right)|_{a=b=1} = \left(\psi(1)-\psi(2)\right)^2-\psi^{(1)}(2)=2-\dfrac{\pi^2}{6}

Thus 0 π / 2 ln ( sin x ) ln ( cos x ) sin ( 2 x ) d x = 1 2 π 2 24 \displaystyle \int_0^{\pi/2} \ln(\sin x)\ln(\cos x) \sin(2x)\; dx = \dfrac{1}{2}-\dfrac{\pi^2}{24} making the answer 29 \boxed{29}

Note: 2 a b ( β ( a , b ) ) = β ( a , b ) [ ( ψ ( a ) ψ ( a + b ) ) ( ψ ( b ) ψ ( a + b ) ) ψ ( 1 ) ( a + b ) ] \displaystyle \dfrac{\partial^2}{\partial a \partial b}\left(\beta(a,b)\right) = \beta(a,b)\left[ (\psi(a)-\psi(a+b))(\psi(b)-\psi(a+b))-\psi^{(1)}(a+b)\right]

We can write the integral as :-

2 0 π 2 ln ( cos ( x ) ) ln ( sin ( x ) ) sin ( x ) cos ( x ) d x \displaystyle 2\int_{0}^{\frac{\pi}{2}} \ln\left(\cos(x)\right)\ln\left(\sin(x)\right)\sin(x)\cos(x)\,dx

Substituting sin ( x ) = t \sin(x) = t we have:-

2 0 1 ln ( 1 t 2 ) t ln ( t ) d t = 0 1 ln ( 1 t 2 ) t ln ( t ) d t \displaystyle 2\int_{0}^{1}\ln\left(\sqrt{1-t^{2}}\right)t\ln(t)\,dt =\int_{0}^{1}\ln\left(1-t^{2}\right)t\ln(t)\,dt

Now we know that ln ( 1 x ) = r = 1 x r r \displaystyle -\ln(1-x) = \sum_{r=1}^{\infty}\frac{x^{r}}{r} for 1 x < 1 -1\leq x < 1

Hence ln ( 1 x 2 ) = r = 1 x 2 r r \displaystyle -\ln(1-x^{2}) = \sum_{r=1}^{\infty}\frac{x^{2r}}{r} for 1 x < 1 -1\leq x < 1

Hence we have :-

r = 1 0 1 t 2 r + 1 ln ( t ) r d t \displaystyle -\sum_{r=1}^{\infty}\int_{0}^{1}\frac{t^{2r+1}\ln(t)}{r}\,dt

Substituting t = e z t=e^{-z} we have :-

r = 1 0 e z ( 2 r + 2 ) z r d z \displaystyle \sum_{r=1}^{\infty}\int_{0}^{\infty}\frac{e^{-z(2r+2)}z}{r}\,dz

Now substitute ( 2 r + 2 ) z = y (2r+2)z=y

r = 1 0 e y y r ( 2 r + 2 ) 2 d y = 1 4 r = 1 1 r ( r + 1 ) 2 \displaystyle \sum_{r=1}^{\infty}\int_{0}^{\infty}\frac{e^{-y}y}{r(2r+2)^{2}}\,dy = \frac{1}{4}\sum_{r=1}^{\infty}\frac{1}{r(r+1)^{2}}

= 1 4 r = 1 1 ( r + 1 ) ( 1 r 1 r + 1 ) = 1 4 r = 1 ( 1 r 1 r + 1 ) 1 4 r = 1 1 ( r + 1 ) 2 \displaystyle = \frac{1}{4}\sum_{r=1}^{\infty}\frac{1}{(r+1)}\left(\frac{1}{r}-\frac{1}{r+1}\right) = \frac{1}{4}\sum_{r=1}^{\infty}\left(\frac{1}{r}-\frac{1}{r+1}\right) - \frac{1}{4}\sum_{r=1}^{\infty}\frac{1}{(r+1)^{2}}

Note here that the splitting of the sums are possible due to convergence of both the sums by Limit Comparison Test.

= 1 4 1 4 ( ζ ( 2 ) 1 ) = 1 4 + 1 4 π 2 24 = 1 2 π 2 24 \displaystyle = \frac{1}{4} - \frac{1}{4}\left(\zeta(2)-1\right) = \frac{1}{4}+\frac{1}{4} - \frac{\pi^{2}}{24} = \frac{1}{2} - \frac{\pi^{2}}{24}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...