My fourth integration problem

Calculus Level 4

0 1 / 2 d x 9 36 x 2 arcsin 2 ( 2 x ) + 4 x 2 arcsin 2 ( 2 x ) \displaystyle \int_{0}^{{1} / {2} } \frac{dx}{\sqrt{9-36x^{2}-\arcsin^{2}(2x) +4x^{2} \arcsin^{2} (2x)}}

If the integral above is equal to a b arcsin ( arcsin ( c ) d ) \displaystyle \dfrac{a}{b} \arcsin \left( \dfrac{\arcsin(c)}{d}\right) , where a , b , c a,b,c and d d are positive integers, with a , b a, b are coprime, find a + b + c + d a+b+c+d .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

0 0.5 d x ( 3 2 ( arcsin 2 x ) 2 ) ( 1 ( 2 x ) 2 ) n o w p u t arcsin 2 x = t d x ( 1 ( 2 x ) 2 ) = d t 2 0 arcsin 1 d t 2 ( ( 3 2 ( t ) 2 ) ) = 1 2 arcsin ( arcsin ( 1 ) 3 ) \int _{ 0 }^{ 0.5 }{ \frac { dx }{ \sqrt { \left( { 3 }^{ 2 }-{ \left( \arcsin { 2x } \right) }^{ 2 } \right) \left( 1-{ \left( 2x \right) }^{ 2 } \right) } } } \\ now\quad put\quad \arcsin { 2x } =t\\ \quad \quad \quad \frac { dx }{ \sqrt { \left( 1-{ \left( 2x \right) }^{ 2 } \right) } } =\frac { dt }{ 2 } \\ \int _{ 0 }^{ \arcsin { 1 } }{ \frac { dt }{ 2\left( \sqrt { \left( { 3 }^{ 2 }-{ \left( t \right) }^{ 2 } \right) } \right) } } \\ =\frac { 1 }{ 2 } \arcsin { \left( \frac { \arcsin { \left( 1 \right) } }{ 3 } \right) }

Moderator note:

What motivates the substitution of t = arcsin 2 x t = \arcsin 2x ?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...