My Friend's Failure 01

Algebra Level 3

Once, when I asked one of my friends to write the expansion of ( a + b + c ) 3 (a+b+c)^{3}

He wrote -

( a + b + c ) 3 = a 3 + b 3 + c 3 (a+b+c)^{3} = a^{3}+b^{3}+c^{3}

For which condition below my friend is correct?

( a + b + c ) ( a b + b c + c a ) = a b c (a+b+c) (ab+bc+ca) = abc ( a + b ) ( b + c ) ( c + a ) 0 (a+b)(b+c)(c+a) ≠ 0 a = b = c a = b = c ( a + b + c ) 2 = a 2 + b 2 + c 2 (a+b+c)^{2} = a^{2}+b^{2}+c^{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Raiyun Razeen
Apr 24, 2016

We know, ( a + b + c ) 3 = a 3 + b 3 + c 3 + 3 ( a + b ) ( b + c ) ( c + a ) (a+b+c)^{3} = a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a)

Therefore, ( a + b + c ) 3 = a 3 + b 3 + c 3 (a+b+c)^{3} = a^3 + b^3 + c^3 will be true, if ( a + b ) ( b + c ) ( c + a ) = 0 (a+b)(b+c)(c+a) = 0 ( a + b ) ( b c + a b + c 2 + c a ) = 0 \Rightarrow (a+b)(bc+ab+c^2+ca) = 0 a b c + a 2 b + c 2 a + c a 2 + b 2 c + a b 2 + b c 2 + a b c = 0 \Rightarrow abc+a^2b+c^2a+ca^2+b^2c+ab^2+bc^2+abc = 0 a 2 b + a b c + c a 2 + a b 2 + b 2 c + a b c + a b c + b c 2 + c 2 a = a b c \Rightarrow a^2b+abc+ca^2+ab^2+b^2c+abc+abc+bc^2+c^2a = abc ( a + b + c ) ( a b + b c + c a ) = a b c \Rightarrow (a+b+c)(ab+bc+ca) = abc

So, the answer is ( a + b + c ) ( a b + b c + c a ) = a b c \boxed {(a+b+c)(ab+bc+ca) = abc}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...