My mathematical physics test

Calculus Level 4

Let k k be a real number. Evaluate the integral

1 π 0 π e k cos ( θ ) cos ( k sin ( θ ) ) d θ . \frac{1}{\pi} \int_{0}^{\pi} e^{k \cos(\theta)} \cos(k \sin(\theta)) d\theta.

  • Hint: you may want to solve this one, first: Suppose C is the circumference z = 1 |z| = 1 . Let k k and a < 1 a < 1 be real numbers and n n a natural number. Evaluate the integral

I n ( z , a ) = C e k z ( z a ) n d z . I_{n}(z, a) = \oint_{C} \frac{e^{kz}}{(z-a)^{n}} dz.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Víctor Martín
Aug 6, 2014

A simple solution: We can deduce that the result of the integral is the same for every real k k . So, if we take k = 0 k=0 , then:

1 π 0 π e k cos θ cos ( k sin θ ) d θ = \frac { 1 }{ \pi } \int _{ 0 }^{ \pi }{ { e }^{ k\cos { \theta } }·\cos { (k\sin { \theta } ) } } d\theta =

1 π 0 π e 0 cos θ cos ( 0 sin θ ) d θ = \quad \frac { 1 }{ \pi } \int _{ 0 }^{ \pi }{ { e }^{ 0·\cos { \theta } }·\cos { (0·\sin { \theta } ) } } d\theta =

1 π 0 π e 0 cos ( 0 ) d θ = 1 π 0 π 1 d θ = \frac { 1 }{ \pi } \int _{ 0 }^{ \pi }{ { e }^{ 0 }·\cos { (0) } } d\theta =\quad \frac { 1 }{ \pi } \int _{ 0 }^{ \pi }{ 1 } d\theta \quad =

1 π ( π 0 ) = 1 \quad \frac { 1 }{ \pi } (\pi -0)=1

Thus, the solution is 1 \boxed{1} .

How can you tell it is the same for every k?

Lucas Tell Marchi - 6 years, 10 months ago

Log in to reply

Because it's what the problem states. As it's a close answer, the solution must be the same for every real k k

Víctor Martín - 6 years, 9 months ago
Pedro Ramirez
Jul 11, 2014

Cauchy's Integral Formula implies that I 1 ( z , 0 ) = 2 π i I_1(z, 0) = 2\pi i .

Moreover, if we consider the parametrization of C : f ( θ ) = e i θ , θ [ 0 , 2 π ] C :f(\theta) = e^{i\theta}, \theta \in [0, 2\pi] to solve I 1 ( z , 0 ) I_1(z, 0) by definition, we obtain the following:

I 1 ( z , 0 ) = i 0 2 π e k e i θ e i θ e i θ d θ = i 0 2 π e k e i θ d θ = i 0 2 π e k cos ( θ ) e i k sin ( θ ) d θ \displaystyle I_1(z, 0) = i\int\limits_0^{2\pi} \frac{ e ^ {k e ^{ i \theta }}}{e^{ i\theta}} e^{i \theta} d\theta = i\int\limits_0^{2\pi} e^{ ke^{i\theta}} d\theta = i\int\limits_0^{2\pi} e^{k\cos(\theta)} e^{ik\sin(\theta)} d\theta

I 1 ( z , 0 ) = i 0 2 π e k cos ( θ ) ( cos ( k sin ( θ ) ) + i sin ( k sin ( θ ) ) ) d θ \displaystyle I_1(z, 0) = i\int\limits_0^{2\pi} e^{k\cos(\theta)}(\cos(k\sin(\theta)) + i\sin(k\sin(\theta))) d\theta

I 1 ( z , 0 ) = i 0 2 π e k cos ( θ ) cos ( k sin ( θ ) ) d θ 0 2 π e k cos ( θ ) sin ( k sin ( θ ) ) d θ \displaystyle I_1(z, 0) = i\int\limits_0^{2\pi} e^{k\cos(\theta)}\cos(k\sin(\theta))d\theta - \int\limits_0^{2\pi} e^{k\cos(\theta)}\sin(k\sin(\theta))d\theta .

Since I 1 ( z , 0 ) = 2 π i I_1(z, 0) = 2\pi i , it follows that 2 π = 0 2 π e k cos ( θ ) cos ( k sin ( θ ) ) d θ \displaystyle 2\pi = \int\limits_0^{2\pi} e^{k\cos(\theta)}\cos(k\sin(\theta))d\theta .

Let g ( θ ) = e k cos ( θ ) cos ( k sin ( θ ) ) g(\theta) = e^{k\cos(\theta)}\cos(k\sin(\theta)) . Notice that g ( π + θ ) = g ( π θ ) , θ R g(\pi + \theta) = g(\pi - \theta), \forall \theta \in \mathbb{R} .

Therefore 0 2 π g ( θ ) d θ = 2 0 π g ( θ ) d θ = 2 π 1 π 0 π g ( θ ) d θ = 1 \displaystyle \int\limits_0^{2\pi} g(\theta) d\theta = 2 \int\limits_0^{\pi} g(\theta) d\theta = 2\pi \Rightarrow \frac{1}{\pi} \int\limits_0^{\pi} g(\theta) d\theta = 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...