My only way to express sorry

Algebra Level 4

If the coefficient of x 2 r x^{2r} is greater than half the coefficient of x 2 r + 1 x^{2r + 1} in the expansion of ( 1 + x ) 15 (1+x)^{15} , then find the sum of all possible integral values of r r


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Feb 25, 2016

First we note coefficient of x r x^r in expansion of ( 1 + x ) n (1+x)^n is ( n r ) \binom{n}{r} .
According to the question: ( 15 2 r ) > 1 2 ( 15 2 r + 1 ) \large \binom{15}{2r}>\frac{1}{2}\binom{15}{2r+1} ̸ 15 ! ( 15 2 r ) ! ( 2 r ) ! > ̸ 15 ! 2 ( 15 2 r 1 ) ! ( 2 r + 1 ) ! \implies \dfrac{\not{15!}}{(15-2r)!(2r)!}>\dfrac{\not{15!}}{2(15-2r-1)!(2r+1)!} 1 15 2 r > 1 2 ( 2 r + 1 ) \implies \dfrac{1}{15-2r}>\dfrac{1}{2(2r+1)} 6 r 13 2 r 15 < 0 \implies \dfrac{6r-13}{2r-15}<0 13 6 < r < 15 2 \implies \large \frac{13}{6}<r<\frac{15}{2} Hence integral r=3,4,5,6,7.
3 + 4 + 5 + 6 + 7 = 25 \therefore~3+4+5+6+7=\huge\color{#456461}{\boxed{\color{#D61F06}{\boxed{\color{#007fff}{ 25}}}}}

Why did you discard non-integer values of r?

Setting r = 13 2 \frac{13}{2} , ( 15 13 ) {15 \choose 13} > 1 2 \frac{1}{2} ( 15 14 ) {15 \choose 14}

The problem does not specify that r must be an integer.

Alex G - 5 years, 3 months ago

Log in to reply

Yeah You are right

Prakhar Bindal - 5 years, 3 months ago

Shouldn't it be 15 2 \dfrac{15}{2} in place of 7 2 \dfrac{7}{2} ? :p

Anik Mandal - 5 years, 3 months ago

Log in to reply

Ahh. Silly me .. Thanks ..

Rishabh Jain - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...