My problems #10

Algebra Level 3

The sum of the infinite series

log 2 3 + log 4 9 + log 8 27 + \dfrac{\text{log}2}{3}+\dfrac{\text{log}4}{9}+\dfrac{\text{log}8}{27}+\ldots

can be expressed as a × log b c . \displaystyle\ \dfrac{a\times{\text{log}\ b}}{c}. Find a + b + c a+b+c


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Saurav Pal
Apr 2, 2015

L e t l o g 2 3 + l o g 4 9 + l o g 8 27 + . . . = x . x = l o g 2 3 + 2 l o g 2 3 2 + 3 l o g 2 3 3 + . . . x 3 = l o g 2 3 2 + 2 l o g 2 3 3 + . . . 2 x 3 = l o g 2 3 + l o g 2 3 2 + l o g 2 3 3 + . . . 2 x = l o g 2 ( 1 + 1 3 + 1 3 2 + . . . ) 2 x = 3 2 l o g 2 x = 3 l o g 2 4 . a + b + c = 3 + 2 + 4 = 9 . Let\quad \frac { log2 }{ 3 } +\frac { log4 }{ 9 } +\frac { log8 }{ 27 } +.\quad .\quad .=\quad x.\\ x\quad =\quad \frac { log2 }{ 3 } +\frac { 2log2 }{ { 3 }^{ 2 } } +\frac { 3log2 }{ { 3 }^{ 3 } } +.\quad .\quad .\\ \frac { x }{ 3 } \quad =\quad \quad \quad \quad \quad \quad \frac { log2 }{ { 3 }^{ 2 } } +\frac { 2log2 }{ { 3 }^{ 3 } } +.\quad .\quad .\\ \frac { 2x }{ 3 } \quad =\quad \frac { log2 }{ 3 } +\frac { log2 }{ { 3 }^{ 2 } } +\frac { log2 }{ { 3 }^{ 3 } } +.\quad .\quad .\\ 2x\quad =\quad log2\quad (1+\frac { 1 }{ 3 } +\frac { 1 }{ { 3 }^{ 2 } } +.\quad .\quad .)\\ 2x\quad =\quad \frac { 3 }{ 2 } log2\quad \Rightarrow \quad x\quad =\quad \boxed { \frac { 3\quad log2 }{ 4 } } .\\ \therefore \quad a+b+c\quad =\quad 3+2+4\quad =\quad \boxed { 9 } .

Could you please explain how do you get the fourth line (the 2x/3 part)?

谦艺 伍 - 4 years, 9 months ago

Log in to reply

I believe he subtracted the x/3 series from the series for x.

Tristan Goodman - 1 year, 4 months ago

Log in to reply

Oh I see. Thanks.

谦艺 伍 - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...