My 4th Problem

Algebra Level 2

Find the sum of all real roots of

27 x 3 + 21 x + 8 = 0 \ 27x^3+21x+8 = 0


The answer is -0.33333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Abhimanyu Singh
Mar 2, 2015

27 x 3 + 21 x + 8 = 0 27x^{3} + 21x + 8 = 0 27 x 3 + 1 + 21 x + 7 = 0 27x^{3} + 1 + 21x + 7 = 0 ( 3 x ) 3 + ( 1 ) 3 + 21 x + 7 = 0 (3x)^{3} + (1)^{3} + 21x + 7 = 0 ( 3 x + 1 ) ( 9 x 2 3 x + 1 ) + 7 ( 3 x + 1 ) = 0 (3x + 1) (9x^{2} - 3x + 1) + 7 (3x + 1) = 0 ( 3 x + 1 ) ( 9 x 2 3 x + 8 ) = 0 (3x + 1) (9x^{2} - 3x + 8) = 0 Real root exist for 3 x + 1 = 0 3x + 1 = 0 x = 0.33333 x = -0.33333

Parth Lohomi
Feb 27, 2015

Here is what I did,Upvote if you are satisfied!


27 x 3 + 21 x + 8 = 0 27x^3+21x+8=0

( 3 x ) 3 + ( 2 ) 8 + 21 x = 0 (3x)^3+(2)^8+21x=0

This can be written as

( 3 x ) 3 + ( 2 ) 3 + 54 x 2 + 15 x + 21 x = 54 x 2 + 15 x (3x)^3+(2)^3+54x^2+15x+21x = 54x^2+15x

( 3 x + 2 ) 3 = 54 x 2 + 15 x (3x+2)^3 = 54x^2+15x --------------Equation 1 1


Let ( 3 x + 2 ) = u (3x+2) = u

9 x 2 + 4 + 12 x = u 2 54 x 2 + 72 x + 24 = 6 u 2 9x^2+4+12x = u^2 \rightarrow\ 54x^2+72x+24 = 6u^2

\rightarrow 54 x 2 + 15 x = 6 u 2 57 x 24 54x^2+15x = 6u^2-57x-24


57 x + 38 = 19 u 57x+38 = 19u


From equation 1 1 ( 3 x + 2 ) 3 = 54 x 2 + 15 x (3x+2)^3 = 54x^2+15x

\rightarrow u 3 = 6 u 2 7 x 24 u^3 = 6u^2-7x-24

\rightarrow u 3 = 6 u 2 19 u + 14 u^3=6u^2-19u+14

\rightarrow u 3 6 u 2 + 19 14 = 0 u^3-6u^2+19-14 = 0

O n e r o o t i s 1 \huge One \ root \ is \ 1

( u 1 ) ( u 2 5 u + 14 ) (u-1)(u^2-5u+14) = u 3 6 u 2 + 19 u 14 u^3-6u^2+19u-14

So roots come out to be

u = 1 , 5 ± 31 2 u=1,\dfrac{5\pm\sqrt{-31}}{2}

solving for x x from u u

\rightarrow 3 x + 2 = 1 x = 1 / 3 3x+2=1 \implies x= -1/3

\rightarrow 3 x + 2 = 5 ± 31 2 3x+2 = \dfrac{5\pm\sqrt{-31}}{2}

\implies x = 1 ± 31 6 x=\dfrac{1\pm\sqrt{-31}}{6}

so real roots are 1 3 = 0.333..... \boxed{\dfrac{-1}{3}=-0.333.....}

Don't you think you made the solution tougher than just doing simple factorisation to get the real root.

Abhimanyu Singh - 6 years, 3 months ago

As per remainder theorem, X = 1 , 2 , 4 , 8 1 , 3 , 9 . X=\dfrac{1,2,4,8}{1,3,9}. . Signs do not change so there is no +tive root. So trying f(-1,-1/3,-1/9....) we get f ( 1 3 ) = 0. f ( X ) 3 X + 1 = 9 X 2 3 X + 8... B u t . 9 4 8 7 < 0.. t h e r e a r e n o m o r e r e a l r o o t s . A n s w e r 0.333 f(-\dfrac{1}{3}) =0.\\ \dfrac{f(X)}{3X+1} =9X^2-3X+8...~~~~But.9-4*8*7<0..\therefore~ there~ are~ no~\\ more~ real~ roots. ~~~~~~Answer ~~\boxed{\Large -0.333}

Note: It's the "rational root theorem" instead of the "remainder (factor) theorem".

Calvin Lin Staff - 6 years, 2 months ago
Aryan Gaikwad
Mar 1, 2015

27 x 3 + 21 x + 8 = 0 ( 3 x + 1 ) ( 9 x 2 3 x + 8 ) = 0 3 x + 1 = 0 { 27x }^{ 3 }+21x+8=0\\ (3x+1)({ 9x }^{ 2 }-3x+8)=0\\ 3x+1=0

or

9 x 2 3 x + 8 = 0 { 9x }^{ 2 }-3x+8 = 0

But since 9 x 2 3 x + 8 = 0 { 9x }^{ 2 }-3x+8 = 0 doesn't have a real root,

x = 1 3 = 0.333 x=-\frac { 1 }{ 3 } = \sim - 0.333

You need to specify how you factorised it.

Parth Lohomi - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...